Resposta:
Explicació:
# "a" color (blau) "completa el quadrat"
# • "el coeficient del terme" x ^ 2 "ha de ser de 1" #
# rArr3 (x ^ 2 + 2x + 1/3) = 0
# • "afegir / restar" (1/2 "del coeficient del terme" x ") ^ 2" a "#
# x ^ 2 + 2x #
# rArr3 (x ^ 2 + 2 (1x) color (vermell) (+1) color (vermell) (- 1) +1/3) = 0
# rArr3 (x + 1) ^ 2 + 3 (-1 + 1/3) = 0 #
# rArr3 (x + 1) ^ 2-2 = 0
#rArr (x + 1) ^ 2 = 2/3 #
#color (blau) "pren l’arrel quadrada dels dos costats" #
# rArrx + 1 = + - sqrt (2/3) larrcolor (blau) "nota més o menys" #
# rArrx = -1 + -sqrt6 / 3larrcolor (blau) "racionalitzar el denominador" #
La longitud de cada costat del quadrat A s'incrementa en un 100 per cent per fer quadrat B. Llavors cada costat del quadrat s'incrementa en un 50 per cent per fer el quadrat C. Per quin percentatge és l'àrea del quadrat C major que la suma de les àrees de quadrat A i B?
L'àrea de C és un 80% superior a la superfície de l'àrea A + de B Definir com a unitat de mesura la longitud d’un costat d’A. Àrea d = 1 ^ 2 = 1 sq.unit La longitud dels costats de B és 100% més que la longitud dels costats d’A rarr. Longitud dels costats de B = 2 unitats. Àrea de B = 2 ^ 2 = 4 unitats quadrades. La longitud dels costats de C és un 50% més que la longitud dels costats de B rarr. Longitud de costats de C = 3 unitats. Àrea de C = 3 ^ 2 = 9 metres quadrats. L'àrea de C és 9- (1 + 4) = 4 unitats superiors a les àrees combinades d
Les arrels de l’equació quadràtica 2x ^ 2-4x + 5 = 0 són alfa (a) i beta (b). (a) Mostrar que 2a ^ 3 = 3a-10 (b) Trobeu l'equació quadràtica amb les arrels 2a / b i 2b / a?
Mirar abaix. Primer trobeu les arrels de: 2x ^ 2-4x + 5 = 0 Usant la fórmula quadràtica: x = (- (- 4) + - sqrt ((- 4) ^ 2-4 (2) (5))) / 4 x = (4 + -sqrt (-24)) / 4 x = (4 + -2isqrt (6)) / 4 = (2 + -isqrt (6)) / 2 alfa = (2 + isqrt (6)) / 2 beta = (2-isqrt (6)) / 2 a) 2a ^ 3 = 3a-10 2 ((2 + isqrt (6)) / 2) ^ 3 = 3 ((2 + isqrt (6)) / 2 ) -10 2 ((2 + isqrt (6)) / 2) ^ 3 = (2 (2 + isqrt (6)) (2 + isqrt (6)) (2 + isqrt (6))) / 8 = 2 * (- 28 + 6isqrt (6)) / 8 color (blau) (= (- 14 + 3isqrt (6)) / 2) 3 ((2 + isqrt (6)) / 2) -10 = (6 + 3isqrt) (6)) / 2-10 = (6 + 3isqrt (6) -20) / 2color (blau) (= (- 14 + 3isqrt (6)) / 2)
Quina declaració descriu millor l’equació (x + 5) 2 + 4 (x + 5) + 12 = 0? L’equació és de forma quadràtica, ja que es pot reescriure com una equació quadràtica amb u u (x + 5). L’equació és de forma quadràtica perquè quan s’expandeix,
Com s’explica a continuació, la substitució de l’U la qualificarà de quadràtica en u. Per a quadràtics en x, la seva expansió tindrà la major potència de x com 2, la qualificarà millor com quadràtica en x.