Resposta:
Explicació:
# 3 + i = sqrt (10) (cos (alfa) + i sin (alfa)) # on#alpha = arctan (1/3) #
Tan
#root (3) (3 + i) = arrel (3) (sqrt (10)) (cos (alfa / 3) + i sin (alfa / 3)) #
# = arrel (6) (10) (cos (1/3 arctan (1/3)) + i sin (1/3 arctan (1/3))) #
# = arrel (6) (10) cos (1/3 arctan (1/3)) + arrel (6) (10) pecat (1/3 arctan (1/3))
Des de
Les altres dues arrels del cub de
#omega (root (6) (10) cos (1/3 arctan (1/3)) + root (6) (10) sin (1/3 arctan (1/3)) i) #
# = arrel (6) (10) cos (1/3 arctan (1/3) + (2pi) / 3) + arrel (6) (10) pecat (1/3 arctan (1/3) + (2pi) / 3)
# omega ^ 2 (root (6) (10) cos (1/3 arctan (1/3)) + root (6) (10) sin (1/3 arctan (1/3)) i) #
# = arrel (6) (10) cos (1/3 arctan (1/3) + (4pi) / 3) + arrel (6) (10) pecat (1/3 arctan (1/3) + (4pi) / 3)