Resposta:
Explicació:
El nostre gran problema en aquesta integral és l’arrel, així que volem desfer-nos-en. Ho podem fer introduint una substitució
De manera que es divideix (i recordem, dividir per un recíproc és el mateix que multiplicar per només el denominador) per integrar respecte a
Ara tot el que hem de fer és expressar el
Podem connectar això a la nostra integral per obtenir:
Es pot avaluar utilitzant la regla de potència inversa:
Substitució per a
Què és (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))?
2/7 Prenem, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (cancel·lar (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - cancel·lar (2sqrt15) -5 + 2 * 3 + cancel·lar (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Tingueu en compte que si en els denomina
Com simplifiqueu (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / (( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?
Formatatge matemàtic enorme ...> color (blau) (((1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) ) / (sqrt (a + 1) / ((a-1) sqrt (a + 1) - (a + 1) sqrt (a-1))) = color (vermell) (((1 / sqrt (a- 1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)))) / (sqrt (a +1) / (sqrt (a-1) cdot sqrt (a-1) cdot sqrt (a + 1) -sqrt (a + 1) cdot sqrt (a + 1) sqrt (a-1))) = color ( blau) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a -1)))) / (sqrt (a + 1) / (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) = color (vermell) ((1 /
Quina és la integral de int (seg ^ 2x) / sqrt (4-sec ^ 2x) dx?
La resposta d’aquesta pregunta = sin ^ (- 1) (tanx / sqrt3) Per fer-ho, tanx = t Llavors sec ^ 2x dx = dt També sec ^ 2x = 1 + tan ^ 2x Posar aquest valor en l’equació original (sqrt (3-t ^ 2)) = sin ^ (- 1) (t / sqrt3) = sin ^ (- 1) (tanx / sqrt3) Espero que ajudi !!