Com simplifiqueu (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / (( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?

Com simplifiqueu (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / (( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?
Anonim

Resposta:

Format de matemàtiques enorme …

Explicació:

#color (blau) (((1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1))) / (sqrt (a +1) / ((a-1) sqrt (a + 1) - (a + 1) sqrt (a-1))) #

# = color (vermell) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)))) / (sqrt (a + 1) / (sqrt (a-1) cdot sqrt (a-1) cdot sqrt (a + 1) -sqrt (a + 1) cdot sqrt (a + 1) sqrt (a-1))) #

# = color (blau) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)))) / (sqrt (a + 1) / (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) #

# = color (vermell) ((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1))) xx (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) / sqrt (a + 1) #

# = color (blau) ((1 / sqrt (a-1) + sqrt (a + 1)) xx ((sqrt (a + 1) cdot sqrt (a-1)) / (sqrt (a-1) - sqrt (a + 1))) xx (cancel·la ((sqrt (a + 1))) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) / cancelsqrt (a + 1))) #

# = color (vermell) (((1 + sqrt (a + 1) cdot sqrt (a-1)) / (sqrt (a-1))) xx ((sqrt (a + 1) cdot sqrt (a-1))) / (sqrt (a-1) -sqrt (a + 1))) xx sqrt (a-1) cdot (sqrt (a-1) -sqrt (a + 1)) #

# = color (blau) (((1 + sqrt (a + 1) cdot sqrt (a-1)) / cancel (sqrt (a-1))) xx ((sqrt (a + 1) cdot cancel ((sqrt) (a-1)))) / color (vermell) (cancel·la (color (verd) ((sqrt (a-1) -sqrt (a + 1))))) xx sqrt (a-1) cdot color (vermell)) (cancel·la el color (verd) ((sqrt (a-1) -sqrt (a + 1))) #

# = color (vermell) (ul (bar (| color (blau) ((1 + sqrt (a + 1) cdot sqrt (a-1)) cdot (sqrt ((a + 1) (a-1)))) |

Resposta:

#sqrt (a ^ 2-1) + a ^ 2-1

Explicació:

Per simplificar les coses, farem servir # u ^ 2 = a + 1 # i # v ^ 2 = a-1 #, que ens dóna:

# (v ^ -1 + u) / (u ^ -1-v ^ -1) * (uv ^ 2-vu ^ 2) / u = ((v ^ -1 + u) (uv ^ 2-vu ^ 2)) / (u (u ^ -1-v ^ -1)) = (uv-u ^ 2 + (uv) ^ 2-vu ^ 3) / (1-uv ^ -1) = (uv (1) + uv) -u ^ 2 (1 + uv)) / ((vu) / v) = (uv (1 + uv) (vu)) / (vu) = uv (1 + uv) #

#uv (1 + uv) = uv + u ^ 2v ^ 2 = sqrt (a-1) sqrt (a + 1) + (a-1) (a + 1) = sqrt (a ^ 2-1) + a ^ 2-1 #