Resposta:
Explicació:
Deixar
Resposta:
Explicació:
Tingues en compte que:
Ara, com
# = oo #
Explicació addicional
Heus aquí el raonament que va donar lloc a la solució anterior.
Aquesta és una forma indeterminada, però no podem aplicar la regla de l'Hospital a aquest formulari.
Podríem reescriure'l com
Recordeu-ho
I que
Això és el que motiva la reescriptura anterior.
Com
Tan,
Si no teniu aquest fet disponible, feu servir la regla de l'Hospital
# = lim_ (xrarroo) (8e ^ (2x)) / (6) = oo #
Per què lim_ (x-> oo) (sqrt (4x ^ 2 + x-1) -sqrt (x ^ 2-7x + 3)) = lim_ (x-> oo) (3x ^ 2 + 8x-4) / ( 2x + ... + x + ...) = oo?
"Veure explicació" "Multiplicar per" 1 = (sqrt (4 x ^ 2 + x - 1) + sqrt (x ^ 2 - 7 x + 3)) / (sqrt (4 x ^ 2 + x - 1) + sqrt (x ^ 2 - 7 x + 3)) "Llavors obtindreu" lim_ {x-> oo} (3 x ^ 2 + 8 x - 4) / (sqrt (4 x ^ 2 + x - 1) + sqrt ( x ^ 2 - 7 x + 3)) "(perquè" (ab) (a + b) = a ^ 2-b ^ 2 ")" = lim_ {x-> oo} (3 x ^ 2 + 8 x - 4) / (sqrt (4 x ^ 2 (1 + 1 / (4x) - 1 / (4x ^ 2)) + sqrt (x ^ 2 (1 - 7 / x + 3 / x ^ 2)) = lim {x-> oo} (3 x ^ 2 + 8 x - 4) / (2x sqrt (1 + 0 - 0) + x sqrt (1 - 0 + 0)) "(perquè" lim_ {x-> oo} 1 / x = 0 ")" =
Què és igual? lim_ (x-> pi / 2) sin (cosx) / (cos ^ 2 (x / 2) -sin ^ 2 (x / 2)) =?
1 "Tingueu en compte que:" color (vermell) (cos ^ 2 (x) -sin ^ 2 (x) = cos (2x)) "Així que aquí tenim" lim_ {x-> pi / 2} sin (cos (x )) / cos (x) "Aplica ara la regla de l '" òptic ": = lim_ {x-> pi / 2} cos (cos (x)) * (- sin (x)) / (- sin (x)) = lim_ {x-> pi / 2} cos (cos (x)) = cos (cos (pi / 2)) = cos (0) = 1
Què vol dir amb el terme "ample de banda"? Com sé que és el rang de freqüències entre una freqüència superior i una freqüència més baixa. Però, quan diem que un senyal té una amplada de banda de 2 kHz, què significa? Si us plau, expliqueu-ho amb un ex sobre la freqüència de ràdio?
L’ample de banda es defineix com la diferència entre 2 freqüències, pot ser la freqüència més baixa i les freqüències més altes. És una banda de freqüències que està limitada per 2 freqüències a la freqüència inferior fl i la freqüència més alta d'aquesta banda fh.