El vector de posició de A té les coordenades cartesianes (20,30,50). El vector de posició de B té les coordenades cartesianes (10,40,90). Quines són les coordenades del vector de posició de A + B?
<30, 70, 140> When adding vectors, simply add the coordinates. A+B=<20, 30, 50> + <10, 40, 90> =<20+10, 30+40, 50+90> = <30, 70, 140>
Vector A = 125 m / s, 40 graus al nord oest. El vector B és de 185 m / s, 30 graus al sud de l'oest i el vector C és de 175 m / s 50 a l'est del sud. Com es troba el mètode A + B-C per mitjà de la resolució de vectors?
El vector resultant serà de 402,7 m / s a un angle estàndard de 165,6 °. Primer, es resoldrà cada vector (donat aquí en forma estàndard) en components rectangulars (x i y). A continuació, afegiràs els components x i agregaràs els components y. Això us donarà la resposta que busqueu, però de forma rectangular. Finalment, converteix la resultant en forma estàndard. A continuació s’explica com: resoldreu en components rectangulars A_x = 125 cos 140 ° = 125 (-0,776): -95,76 m / s A_y = 125 pecats: 140 ° = 125 (0,643) = 80,35 m / s B_x = 185 cos (-
Deixeu l'angle entre dos vectors no nuls A (vector) i B (vector) ser 120 (graus) i el seu resultant sigui C (vector). Llavors, quin dels següents és (són) correctes?
Opció (b) bb A * bb B = abs bbA abs bbB cos (120 ^ o) = -1/2 abs bbA abs bbBC = bbA + bbB C ^ 2 = (bbA + bbB) * (bbA + bbB) = A ^ 2 + B ^ 2 + 2 bbA * bb B = A ^ 2 + B ^ 2 - abs bbA abs bbB qquad quadrat abs (bbA - bbB) ^ 2 = (bbA - bbB) * (bbA - bbB) = A ^ 2 + B ^ 2 - 2bbA * bbB = A ^ 2 + B ^ 2 + abs bbA abs bbB triangle qquad abs (bbA - bbB) ^ 2 - C ^ 2 = triangle - quadrat = 2 abs bbA abs bbB:. C ^ 2 lt abs (bbA - bbB) ^ 2, qquad bbA, bbB ne bb0:. abs bb C lt abs (bbA - bbB)