Resposta:
Max A =
Min A =
Explicació:
A partir de la fórmula de la zona del triangle
També podem utilitzar la trigonometria per trobar l’angle inclòs enfront del costat més petit:
Ara tenim un triangle "SAS". Utilitzem la Llei dels Cosins per trobar el costat més petit:
El triangle similar més gran tindria la longitud donada de 25 com el costat més curt, i l'àrea mínima el tindria com el costat més llarg, que correspon als 12 de l'original.
Així, l’àrea mínima d’un triangle similar seria
Podem utilitzar la fórmula d’Heron per solucionar l’àrea amb tres costats. Proporcions: 3.37: 9: 12 = 12: 32: 42.7
El triangle A té un àrea de 15 i dos costats de longituds 8 i 7. El triangle B és similar al triangle A i té un costat amb una longitud de 16. Quines són les àrees màximes i mínimes possibles del triangle B?
Àrea màxima de Delta B = 78,3673 L'àrea mínima de Delta B = 48 Delta s A i B són similars. Per obtenir l’àrea màxima de Delta B, el costat 16 de Delta B ha de correspondre al costat 7 de Delta A. Els costats estan en la proporció 16: 7. Per tant, les àrees estaran en la proporció de 16 ^ 2: 7 ^ 2 = 256: 49 Àrea màxima del triangle B = (15 * 256) / 49 = 78.3673 Igual que per obtenir la zona mínima, el costat 8 del Delta A correspondrà al costat 16 de Delta B. Els costats es troben en la proporció 16: 8 i les àrees 256: 64 Àrea míni
El triangle A té un àrea de 15 i dos costats de longituds 8 i 7. El triangle B és similar al triangle A i té un costat amb una longitud de 14. Quines són les àrees màximes i mínimes possibles del triangle B?
Àrea màxima possible del triangle B = 60 Àrea mínima possible del triangle B = 45.9375 Les Delta s A i B són similars. Per obtenir l’àrea màxima de Delta B, el costat 14 de Delta B ha de correspondre al costat 7 de Delta A. Els costats estan en la proporció 14: 7. Per tant, les àrees estaran en la proporció de 14 ^ 2: 7 ^ 2 = 196: 49 Àrea màxima del triangle B = (15 * 196) / 49 = 60 De manera similar, per obtenir la zona mínima, el costat 8 del Delta A correspondrà al costat 14 de Delta B. Els costats es troben en la proporció 14: 8 i les àrees
El triangle A té una àrea de 24 i dos costats de longituds 12 i 15. El triangle B és similar al triangle A i té un costat amb una longitud de 25. Quines són les àrees màximes i mínimes possibles del triangle B?
L'àrea màxima del triangle és 104.1667 i l'àrea mínima 66.6667 Les Delta s A i B són similars. Per obtenir l’àrea màxima de Delta B, el costat 25 de Delta B ha de correspondre al costat 12 de Delta A. Els costats estan en la raó 25: 12. Per tant, les àrees estaran en la proporció de 25 ^ 2: 12 ^ 2 = 625: 144 Àrea màxima del triangle B = (24 * 625) / 144 = 104.1667 Igual que per obtenir la zona mínima, el costat 15 del Delta A correspondrà al costat 25 de Delta B. Els costats són de 25: 15 i les àrees 625: 225 Àrea mínima