Resposta:
Hi ha dos passos per trobar aquesta solució: 1. Trobeu el producte creuat dels dos vectors per trobar un vector ortogonal al pla que els conté i 2. normalitzar aquest vector de manera que tingui la longitud de la unitat.
Explicació:
El primer pas per resoldre aquest problema és trobar el producte creuat dels dos vectors. El producte transversal per definició troba un vector ortogonal al pla en el qual es multipliquen els dos vectors.
=
=
=
Aquest és un vector ortogonal al pla, però encara no és un vector unitari. Per fer-ne un, necessitem "normalitzar" el vector: dividiu cada un dels seus components per la seva longitud. La longitud d'un vector
En aquest cas:
Dividir cada component de
Quin és el vector unitat que és ortogonal al pla que conté (29i-35j-17k) i (32i-38j-12k)?
La resposta és = 1 / 299.7 26 -226, -196,18〉 El vector perpendiculatr a 2 vectors es calcula amb el determinant (cross product) | (veci, vecj, veck), (d, e, f), (g, h, i) | on 〈d, e, f〉 i 〈g, h, i〉 són els 2 vectors Aquí, tenim veca = 〈29, -35, -17〉 i vecb = 〈32, -38, -12〉 Per tant, | (veci, vecj, veck), (29, -35, -17), (32, -38, -12) | = veci | (-35, -17), (-38, -12) | -vecj | (29, -17), (32, -12) + veck | (29, -35), (32, -38) = veci (35 * 12-17 * 38) -vecj (-29 * 12 + 17 * 32) + veck (-29 * 38 + 35 * 32) = 〈- 226, -196,18〉 = vecc verificació fent 2 productes de punt 26 -226, -196,18〉. 〈29, -35, -17〉 =
Quin és el vector unitat que és ortogonal al pla que conté (-2- 3j + 2k) i (3i - 4j + 4k)?
Preneu el producte creuat dels 2 vectors 1 (=, -3, 2) i v_2 = (3, -4, 4) Calculeu v_3 = v_1 xx v_2 1 / sqrt (501) (-4, 14, 17) La v_3 = (-4, 14, 17) La magnitud d'aquest nou vector és: | v_3 | = 4 ^ 2 + 14 ^ 2 + 17 ^ 2 Ara per trobar el vector unitari normalitzem el nostre nou vector u_3 = v_3 / (sqrt (4 ^ 2 + 14 ^ 2 + 17 ^ 2)); = 1 / sqrt (501) (-4, 14, 17)
Quin és el vector unitat que és ortogonal al pla que conté (2i + 3j - 7k) i (3i - j - 2k)?
La resposta és = 1 / sqrt579 * 〈- 13, -17, -11〉 Per calcular un vector perpendicular a altres vectors, heu de calcular el producte creuat Deixeu vecu = 〈2,3, -7〉 i vecv = 3, -1, -2〉 El producte creuat és donat pel determinant | (i, j, k), (u_1, u_2, u_3), (v_1, v_2, v_3) | vecw = | (i, j, k), (2,3, -7), (3, -1, -2) | = i (-6-7) -j (-4 + 21) + k (-2-9) = i (-13) + j (-17) + k (-11) = 〈- 13, -17, -11〉 Per verificar que vecw sigui perpendicular a vecu i vecv Fem un producte de punt. vecw.vecu = 〈- 13, -17, -11〉. 〈2,3, -7〉 = - 26--51 + 77 = 0 vecw.vecv = 〈- 13, -17, -11〉. 〈3 , -1, -2〉 = - 39 + 17 + 22 = 0 A mesura qu