Donat
Els tres primers termes de 4 nombres enters es troben en P. aritmètica i els últims tres termes es troben a Geometric.P.Com trobar aquests 4 nombres? Donat (1r + últim terme = 37) i (la suma dels dos enters al mig és 36)
"Els enters de reqd són," 12, 16, 20, 25. Anomenem els termes t_1, t_2, t_3 i, t_4, on, t_i en ZZ, i = 1-4. Atès que, els termes t_2, t_3, t_4 formen un GP, prenem, t_2 = a / r, t_3 = a, i, t_4 = ar, on, ane0 .. També tenim en compte que, t_1, t_2 i, t_3 són a AP, tenim, 2t_2 = t_1 + t_3 rArr t_1 = 2t_2-t_3 = (2a) / ra. Així, en conjunt, tenim, la Seq., T_1 = (2a) / r-a, t_2 = a / r, t_3 = a, i, t_4 = ar. Pel que es dóna, t_2 + t_3 = 36rArra / r + a = 36, és a dir, un (1 + r) = 36r ....................... .................................... (ast_1). A més, t_1 + t_4 = 37,
Realment no entenc com fer-ho, algú pot fer un pas a pas ?: El gràfic de desintegració exponencial mostra la depreciació esperada per a un vaixell nou, que es ven per 3500, durant 10 anys. -Escriure una funció exponencial per al gràfic -Utilitzeu la funció per trobar
F (x) = 3500e ^ (- (ln (3/7) x) / 3) f (x) = 3500e ^ (- 0.2824326201x) f (x) = 3500e ^ (- 0.28x) Només puc fer el la primera pregunta ja que la resta es va tallar. Tenim a = a_0e ^ (- bx) Segons el gràfic que sembla que tenim (3.1500) 1500 = 3500e ^ (- 3b) e ^ (- 3b) = 1500/3500 = 3/7 -3b = ln ( 3/7) b = -ln (3/7) /3=-0.2824326201 ~~-0.28 f (x) = 3500e ^ (- (ln (3/7) x) / 3) f (x) = 3500e ^ (-0,2824326201x) f (x) = 3500e ^ (- 0,28x)
Per què hi ha tanta gent la impressió que hem de trobar el domini d’una funció racional per trobar els seus zeros? Els zeros de f (x) = (x ^ 2-x) / (3x ^ 4 + 4x ^ 3-7x + 9) són 0,1.
Crec que trobar el domini d'una funció racional no està necessàriament relacionat amb la recerca de les seves arrels / zeros. Trobar el domini significa simplement trobar les condicions prèvies per a la mera existència de la funció racional. En altres paraules, abans de trobar les seves arrels, hem d’assegurar-nos en quines condicions existeix la funció. Podria semblar pedante fer-ho, però hi ha casos particulars quan això importa.