Resposta:
Si la pregunta és simplificar aquesta expressió:
A continuació, mireu un procés de solució a continuació:
Explicació:
Primer, reescriu el radical de la dreta com:
Ara, utilitzeu aquesta regla dels radicals per simplificar el terme a la dreta:
A continuació, indiqueu el nostre terme comú per simplificar les constants:
Què és [5 (arrel quadrada de 5) + 3 (arrel quadrada de 7)] / [4 (arrel quadrada de 7) - 3 (arrel quadrada de 5)]?
(159 + 29sqrt (35)) / 47 color (blanc) ("XXXXXXXX") assumint que no he fet cap error aritmètic (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt) (7)) - 3 (sqrt (5)) Racionalitzeu el denominador multiplicant pel conjugat: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) / (4 (sqrt (7)) + 3 (sqrt (5))) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) +12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Quina és la forma simplificada de l'arrel quadrada de l'arrel quadrada de 10 de 5 sobre l'arrel quadrada de 10 + arrel quadrada de 5?
(sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) = 3-2sqrt (2) (sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) ) color (blanc) ("XXX") = cancel (sqrt (5)) / cancel (sqrt (5)) * (sqrt (2) -1) / (sqrt (2) +1) color (blanc) (") XXX ") = (sqrt (2) -1) / (sqrt (2) +1) * (sqrt (2) -1) / (sqrt (2) -1) color (blanc) (" XXX ") = ( sqrt (2) -1) ^ 2 / ((sqrt (2) ^ 2-1 ^ 2) color (blanc) ("XXX") = (2-2sqrt2 + 1) / (2-1) color (blanc) ("XXX") = 3-2sqrt (2)
Quina és l'arrel quadrada de 7 + arrel quadrada de 7 ^ 2 + arrel quadrada de 7 ^ 3 + arrel quadrada de 7 ^ 4 + arrel quadrada de 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) El primer que podem fer és cancel·lar les arrels amb les potències parells. Des de: sqrt (x ^ 2) = x i sqrt (x ^ 4) = x ^ 2 per a qualsevol nombre, podem dir que sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Ara, 7 ^ 3 poden ser reescrits com 7 ^ 2 * 7, i que 7 ^ 2 pot sortir de l’arrel! El mateix s'aplica a 7 ^ 5 però es reescriu com 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) Ara