Demostrar que cosec (x / 4) + cosec (x / 2) + cosecx = cot (x / 8) -cotx?

Demostrar que cosec (x / 4) + cosec (x / 2) + cosecx = cot (x / 8) -cotx?
Anonim

# LHS = cosec (x / 4) + cosec (x / 2) + cosecx #

# = cosec (x / 4) + cosec (x / 2) + cosecx + cotx-cotx

# = cosec (x / 4) + cosec (x / 2) + color (blau) 1 / sinx + cosx / sinx -cotx #

# = cosec (x / 4) + cosec (x / 2) + color (blau) (1 + cosx) / sinx -cotx #

# = cosec (x / 4) + cosec (x / 2) + color (blau) (2cos ^ 2 (x / 2)) / (2sin (x / 2) cos (x / 2)) - cotx #

# = cosec (x / 4) + cosec (x / 2) + color (blau) (cos (x / 2) / sin (x / 2)) - cotx #

# = cosec (x / 4) + color (verd) (cosec (x / 2) + cot (x / 2)) - cotx #

#color (magenta) "Procedint de manera similar com abans" #

# = cosec (x / 4) + llit de color (verd) (x / 4) -cotx #

# = cot (x / 8) -cotx = RHS #

Resposta:

Si us plau, passem per un Prova donat a la Explicació.

Explicació:

Configuració # x = 8y #, tenim per demostrar-ho,

# cosec2y + cosec4y + cosec8y = coty-cot8y #.

Observeu això, # cosec8y + cot8y = 1 / (sin8y) + (cos8y) / (sin8y) #, # = (1 + cos8y) / (sin8y) #, # = (2cos ^ 2 4y) / (2sin4ycos4y) #, # = (cos4y) / (sin4y) #.

# "Per tant," cosec8y + co8y = cot4y = cot (1/2 * 8y) …….. (estrella) #.

S'està afegint, # cosec4y #, # cosec4y + (cosec8y + co8y) = cosec4y + cot4y #,

# = bressol (1/2 * 4y) ……… perquè, (estrella) #.

#:. cosec4y + cosec8y + co8y = cot2y #.

Re-afegint # cosec2y # i tornar a utilitzar #(estrella)#, # cosec2y + (cosec4y + cosec8y + co8y) = cosec2y + cot2y #, # = bressol (1/2 * 2y) #.

#:. cosec2y + cosec4y + cosec8y + co8y = coty, és a dir, #

# cosec2y + cosec4y + cosec8y = coty-cot8y #, com es desitgi!

Resposta:

Un altre enfocament del que sembla que he après respectat senyor dk_ch.

Explicació:

# RHS = cot (x / 8) -cotx #

# = cos (x / 8) / sin (x / 8) -cosx / sinx #

# = (sinx * cos (x / 8) -cosx * sin (x / 8)) / (sinx * sin (x / 8)) #

# = sin (x-x / 8) / (sinx * sin (x / 8)) = sin ((7x) / 8) / (sinx * sin (x / 8)) #

# = (2sin ((7x) / 8) * cos (x / 8)) / (2 * sin (x / 8) * cos (x / 8) * sinx) #

# = (sinx + sin ((3x) / 4)) ((sinx * sin (x / 4)) = cancel (sinx) / (cancel·leu (sinx) * sin (x / 4)) + (2sin ((3x) / 4) * cos (x / 4)) / (sinx * 2 * sin (x / 4) * cos (x / 4)) #

# = cosec (x / 4) + (sinx + sin (x / 2)) / (sinx * sin (x / 2)) = cosecx + cosec (x / 2) + coesc (x / 4) = LHS #