Segons la llei dels exponents,
Però, des de llavors
i "de
La nostra pregunta es fa,
Això és, Espero que això ajudi:)
Quin és el forat del gràfic d'aquesta expressió racional ?? Corregiu la meva resposta / comprovi la meva resposta
El forat del gràfic es produeix quan x = -2 es crea el forat d’una funció racional quan un factor del numerador i del denominador és el mateix. (x ^ 2-4) / ((x + 2) (x ^ 2-49)) Factor per obtenir ((x-2) (x + 2)) / ((x + 2) (x-7) ) (x + 7)) El factor (x + 2) s'anul·larà. Això significa que el forat es produirà quan x + 2 = 0 o x = -2
Sovint, una resposta que "necessita millorar" s'acompanya d'una segona resposta completament acceptable. Millorar una resposta defectuosa el faria similar a la "bona" resposta. Què fer …?
"Què fer...?" Voleu dir què hem de fer si ens adonem que això ha passat? ... o hem d’editar una resposta defectuosa en comptes d’afegir-ne una de nova? Si observem que això ha succeït, suggeriria que deixem les dues respostes tal i com són (llevat que creieu que hi ha alguna cosa que passi ... llavors, potser, afegiu un comentari). Si hem de millorar una resposta defectuosa és una mica més problemàtic. Certament, si es tracta d’una simple correcció que es podria escriure com a "error tipogràfic", diria que "continuï i edita". Tanmatei
Simplifiqueu l’expressió racional. Indiqueu qualsevol restricció a la variable? Comproveu la meva resposta i expliqueu com arribo a la meva resposta. Sé com fer les restriccions de la resposta final sobre la qual estic confós
((8x + 26) / ((x + 4) (x-4) (x + 3)) restriccions: -4,4, -3 (6 / (x ^ 2-16)) - (2 / ( x ^ 2-x-12)) Factorització de les parts inferiors: = (6 / ((x + 4) (x-4))) - (2 / ((x-4) (x + 3))) Multiplicat ((x + 3) / (x + 3)) i dreta ((x + 4) / (x + 4)) (denomanadors comuns) = (6 (x + 3)) / ((x + 4) ( x-4) (x + 3)) - (2 (x + 4)) / ((x-4) (x + 3) (x + 4)) el que simplifica a: ((4x + 10) / ((( x + 4) (x-4) (x + 3))) de totes maneres, però, les restriccions són bones. Veig que va fer aquesta pregunta fa una mica, aquesta és la meva resposta. Si necessiteu més ajuda, no dubteu a preguntar-li :)