Resposta:
R: Sí, és raonable
B:
Explicació:
Deixar
tan
així que la probabilitat que
per tant, si selecciona un cub 100 vegades, obtindrà 40 cubs amb el número
però com que la pregunta és preguntar-se si és raonable si va aconseguir 50 cubs?
jo diria que Sí, és raonable ja que els 50 cubs són propers als 40
Deixar
Per calcular quantes vegades va obtenir un cub etiquetat
Vaig a posar això en doble comprovació per assegurar-me
Costarà 12 dòlars per assistir a una clínica de golf amb un pro local. Els cubs de boles per practicar durant la clínica costen 3 dòlars cadascun. Quants cubs podeu comprar a la clínica si teniu 30 dòlars per gastar?
6 En primer lloc, heu de pagar la quota d’entrada de 12 dòlars. Per tant, la subtrareu dels $ 30. 30-12 = 18 $ El que ens deixa 18 $ per gastar en galledes de pilotes. Per determinar quants cubs podem comprar, dividim els 18 dòlars pel preu de 3 dòlars. (cancel·leu ($) 18) / (cancel·leu ($) 3) = 6
Hi ha 120 estudiants que esperen sortir de camp. Els estudiants estan numerats de l'1 al 120, tots els alumnes, fins i tot numerats, van al bus1, els divisibles per 5 van al bus2 i els que tenen un nombre divisible per 7 van el bus3. Quants estudiants no van accedir a cap autobús?
41 estudiants no van entrar a cap autobús. Hi ha 120 estudiants. En Bus1 fins i tot numerats, és a dir, cada segon estudiant va, per tant, van 120/2 = 60 estudiants. Tingueu en compte que cada desè estudiant, és a dir, els dotze estudiants, que haurien pogut anar a Bus2, s'han deixat en Bus1. Com cada cinquè estudiant va en Bus2, el nombre d’estudiants que van en autobús (menys de 12 que han passat en Bus1) són 120 / 5-12 = 24-12 = 12 Ara els divisibles per 7 van en Bus3, que és de 17 (com 120/7 = 17 1/7), però aquells amb els números {14,28,35,42,56,70,84,98,105,112} -
Kevin té 5 cubs. Cada cub té un color diferent. Kevin arregla els cubs una al costat de l'altra en una fila. Quin és el nombre total de diferents arranjaments dels 5 cubs que Kevin pot fer?
Hi ha 120 arranjaments diferents dels cinc cubs de colors. La primera posició és una de les cinc possibilitats; la segona posició és, per tant, una de les quatre possibilitats restants; la tercera posició és una de les tres possibilitats restants; la quarta posició serà una de les dues possibilitats restants; i la cinquena posició s'omple amb el cub restant. Per tant, el nombre total de diferents arranjaments es dóna per: 5 * 4 * 3 * 2 * 1 = 120 Hi ha 120 arranjaments diferents dels cinc cubs de colors.