Resposta:
#int (-3x + 5) / (x ^ 2-2x + 5) * dx #
# = arctan ((x-1) / 2) -3 / 2ln (x ^ 2-2x + 5) #
Explicació:
#int (-3x + 5) / (x ^ 2-2x + 5) * dx #
=# -int (3x-5) / (x ^ 2-2x + 5) * dx #
=# -int (3x-3-2) / (x ^ 2-2x + 5) * dx #
=# -int (3x-3) / (x ^ 2-2x + 5) * dx #+#int 2 / (x ^ 2-2x + 5) * dx #
=#int 2 / ((x-1) ^ 2 + 4) * dx #-# 3 / 2int (2x-2) / (x ^ 2-2x + 5) #
=#arctan ((x-1) / 2) -3 / 2ln (x ^ 2-2x + 5) #
Resposta:
# = - 3 / 2ln (x ^ 2-2x + 5) + tan ^ -1 ((x-1) / 2) + C #
Explicació:
#int (-3x + 5) / (x ^ 2-2x + 5) dx #
# = int (-3x + 5-2 + 2) / (x ^ 2-2x + 5) dx #
# = int (-3x + 3) / (x ^ 2-2x + 5) + 2 / (x ^ 2-2x + 5) dx #
# = - int (3x-3) / (x ^ 2-2x + 5) dx + int2 / (x ^ 2-2x + 5) dx #
Per:
# -int (3x-3) / (x ^ 2-2x + 5) dx #
Utilitzeu la substitució:
# u = x ^ 2-2x + 5 #
#implies du = 2x-2dx implica 3 / 2du = 3x-3dx
#therefore -int (3x-3) / (x ^ 2-2x + 5) dx = -int (3/2) / udu = -3 / 2ln (u) + C #
Inverteix la substitució:
# -3 / 2ln (x ^ 2-2x + 5) + C #
Ara per l’altra integral:
# int2 / (x ^ 2-2x + 5) dx #
Escriviu el denominador en forma quadrada completada:
# x ^ 2-2x + 5 = (x-1) ^ 2 - (- 1) ^ 2 + 5 = (x-1) ^ 2 + 4 #
Tan:
# int2 / (x ^ 2-2x + 5) dx = 2intdx / ((x-1) ^ 2 + 4) #
Ara substitueix:
# 2u = (x-1) #
#implies du = 2dx # Tan:
# 2intdx / ((x-1) ^ 2 + 4) = 2int2 / (4u ^ 2 + 4) du = 4 / 4int1 / (u ^ 2 + 1) du #
El que reconeixem s’integrarà simplement a la tangent inversa que ens dóna:
# = tan ^ -1 (u) + C '#
Inverteix la substitució:
# = tan ^ -1 ((x-1) / 2) + C '
Per tant, el "alguna cosa" és:
#int (-3x + 5) / (x ^ 2-2x + 5) dx #
# = - int (3x-3) / (x ^ 2-2x + 5) dx + int2 / (x ^ 2-2x + 5) dx #
# = - 3 / 2ln (x ^ 2-2x + 5) + tan ^ -1 ((x-1) / 2) + C #