Resposta:
La resposta està directament relacionada amb el poder de la variable.
Explicació:
La resposta està directament relacionada amb el poder de la variable.
si
llavors,
Primer
Segon
De la mateixa manera, si
Tindrà 3 valors i així successivament.
El discriminant d'una equació quadràtica és -5. Quina resposta descriu el nombre i el tipus de solucions de l'equació: 1 solució complexa 2 solucions reals 2 solucions complexes 1 solució real?
La vostra equació quadràtica té 2 solucions complexes. El discriminant d’una equació quadràtica només pot proporcionar informació sobre una equació de la forma: y = ax ^ 2 + bx + c o una paràbola. Com que el grau més alt d'aquest polinomi és 2, no ha de tenir més de dues solucions. El discriminant és simplement les coses sota el símbol de l'arrel quadrada (+ -sqrt ("")), però no el propi símbol de l'arrel quadrada. + -sqrt (b ^ 2-4ac) Si el discriminant, b ^ 2-4ac, és inferior a zero (és a dir, qualsevol nombre n
Sovint, una resposta que "necessita millorar" s'acompanya d'una segona resposta completament acceptable. Millorar una resposta defectuosa el faria similar a la "bona" resposta. Què fer …?
"Què fer...?" Voleu dir què hem de fer si ens adonem que això ha passat? ... o hem d’editar una resposta defectuosa en comptes d’afegir-ne una de nova? Si observem que això ha succeït, suggeriria que deixem les dues respostes tal i com són (llevat que creieu que hi ha alguna cosa que passi ... llavors, potser, afegiu un comentari). Si hem de millorar una resposta defectuosa és una mica més problemàtic. Certament, si es tracta d’una simple correcció que es podria escriure com a "error tipogràfic", diria que "continuï i edita". Tanmatei
Utilitzeu el discriminant per determinar el nombre i el tipus de solucions que té l’equació? x ^ 2 + 8x + 12 = 0 A.no solució real B. solució real C. dues solucions racionals D. dues solucions irracionals
C. dues solucions racionals La solució a l'equació quadràtica a * x ^ 2 + b * x + c = 0 és x = (-b + - sqrt (b ^ 2 - 4 * a * c)) / (2 * a In el problema considerat, a = 1, b = 8 i c = 12 Substituint, x = (-8 + - sqrt (8 ^ 2 - 4 * 1 * 12)) / (2 * 1 o x = (-8+ - sqrt (64 - 48)) / (2 x = (-8 + - sqrt (16)) / (2 x = (-8 + - 4) / (2 x = (-8 + 4) / 2 i x = (-8 - 4) / 2 x = (- 4) / 2 i x = (-12) / 2 x = - 2 i x = -6