Resposta:
La resposta és
Explicació:
Per calcular un vector perpendicular a dos altres vectors, heu de calcular el producte creuat
Deixar
El producte creuat és donat pel determinant
Per verificar-ho
Fem un producte de punt.
Com a productes de punt
Per calcular el vector unitari, dividim pel mòdul
Quin és el vector unitat que és ortogonal al pla que conté (29i-35j-17k) i (32i-38j-12k)?
La resposta és = 1 / 299.7 26 -226, -196,18〉 El vector perpendiculatr a 2 vectors es calcula amb el determinant (cross product) | (veci, vecj, veck), (d, e, f), (g, h, i) | on 〈d, e, f〉 i 〈g, h, i〉 són els 2 vectors Aquí, tenim veca = 〈29, -35, -17〉 i vecb = 〈32, -38, -12〉 Per tant, | (veci, vecj, veck), (29, -35, -17), (32, -38, -12) | = veci | (-35, -17), (-38, -12) | -vecj | (29, -17), (32, -12) + veck | (29, -35), (32, -38) = veci (35 * 12-17 * 38) -vecj (-29 * 12 + 17 * 32) + veck (-29 * 38 + 35 * 32) = 〈- 226, -196,18〉 = vecc verificació fent 2 productes de punt 26 -226, -196,18〉. 〈29, -35, -17〉 =
Quin és el vector unitat que és ortogonal al pla que conté (-2- 3j + 2k) i (3i - 4j + 4k)?
Preneu el producte creuat dels 2 vectors 1 (=, -3, 2) i v_2 = (3, -4, 4) Calculeu v_3 = v_1 xx v_2 1 / sqrt (501) (-4, 14, 17) La v_3 = (-4, 14, 17) La magnitud d'aquest nou vector és: | v_3 | = 4 ^ 2 + 14 ^ 2 + 17 ^ 2 Ara per trobar el vector unitari normalitzem el nostre nou vector u_3 = v_3 / (sqrt (4 ^ 2 + 14 ^ 2 + 17 ^ 2)); = 1 / sqrt (501) (-4, 14, 17)
Quin és el vector unitat que és ortogonal al pla que conté (2i + 3j - 7k) i (3i - 4j + 4k)?
El vector unitari és = 〈- 16 / sqrt1386, -29 / sqrt1386, -17 / sqrt1386〉 El vector perpendicular a 2 vectors es calcula amb el determinant (producte creuat) | (veci, vecj, veck), (d, e, f), (g, h, i) | on 〈d, e, f〉 i 〈g, h, i〉 són els 2 vectors Aquí, tenim veca = 〈2,3, -7〉 i vecb = 〈3, -4,4〉 Per tant, | (veci, vecj, veck), (2,3, -7), (3, -4,4) = veci | (3, -7), (-4,4) -vecj | (2, -7), (3,4) | + veck | (2,3), (3, -4) = veci (3 * 4-7 * 4) -vecj (2 * 4 + 7 * 3) + veck (-2 * 4-3 * 3) = 〈- 16, -29, -17〉 = vecc verificació fent 2 productes de punt 〈-16, -29, -17〉. 〈2,3, -7〉 = - 16 * 2-29 * 3-7 * 17 = 0 〈-16,