Substituint l’equació anterior s’obté,
Ara
Així, doncs, el reduït és reduït a
Com demostrar (1 + sinx-cosx) / (1 + cosx + sinx) = tan (x / 2)?
Si us plau mireu més a baix. LHS = (1-cosx + sinx) / (1 + cosx + sinx) = (2sin ^ 2 (x / 2) + 2in (x / 2) * cos (x / 2)) / (2cos ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2) = (2sin (x / 2) [sin (x / 2) + cos (x / 2)]) / (2cos (x / 2) * [ sin (x / 2) + cos (x / 2)]) = tan (x / 2) = RHS
Demaneu-ho: sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)?
Prova a continuació utilitzant conjugats i la versió trigonomètrica del teorema de Pitàgores. Part 1 sqrt ((1-cosx) / (1 + cosx)) color (blanc) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) color (blanc) ("XXX") = sqrt ((1-cosx)) / sqrt (1 + cosx) * color sqrt (1-cosx) / sqrt (1-cosx) (blanc) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) Part 2 de manera similar sqrt ((1 + cosx) / color (1-cosx) (blanc) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) part 3: combinació dels termes sqrt ( (1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx) color (blanc) ("XXX") = (1-
Mostrar que, (1 + cos theta + i * sin theta) ^ n + (1 + cos theta - i * sin theta) ^ n = 2 ^ (n + 1) * (cos theta / 2) ^ n * cos ( n * theta / 2)?
Si us plau mireu més a baix. Sigui 1 + costheta + isintheta = r (cosalpha + isinalpha), aquí r = sqrt ((1 + costheta) ^ 2 + sin ^ 2theta) = sqrt (2 + 2costheta) = sqrt (2 + 4cos ^ 2 (theta / 2 ) -2) = 2cos (theta / 2) i tanalpha = sintheta / (1 + costheta) == (2sin (theta / 2) cos (theta / 2)) / (2cos ^ 2 (theta / 2)) = tan (theta / 2) o alpha = theta / 2 llavors 1 + costheta-isintheta = r (cos (-alpha) + isin (-alpha)) = r (cosalpha-isinalpha) i podem escriure (1 + costheta + isintheta) ^ n + (1 + costheta-isintheta) ^ n usant el teorema de DE MOivre com r ^ n (cosnalpha + isinnalpha + cosnalpha-isinnalpha) = 2r