Resposta:
Els números són
Explicació:
Deixeu que siguin els enters
Com la suma dels més grans i
Per tant,
o bé
Per tant
Els números són
Es poden representar tres nombres enters consecutius per n, n + 1 i n + 2. Si la suma de tres enters consecutius és 57, quins són els enters?
18,19,20 La suma és l'addició del nombre de manera que la suma de n, n + 1 i n + 2 es pot representar com, n + n + 1 + n + 2 = 57 3n + 3 = 57 3n = 54 n = 18 de manera que el nostre primer nombre sencer és de 18 (n) el nostre segon és de 19, (18 + 1) i el nostre tercer és de 20, (18 + 2).
Conèixer la fórmula a la suma dels N enters A) quina és la suma dels primers ners enters consecutius quadrats, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Suma dels primers N sers sencers consecutius Sigma_ (k = 1) ^ N k ^ 3?
Per a S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Tenim sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 resolent per a suma_ {i = 0} ^ ni ^ 2 suma {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni però sum_ {i = 0} ^ ni = ((n + 1) n) / 2 així que sum_ {i = 0} ^ ni ^ 2 =
Què són tres nombres enters imparells consecutius de tal manera que la suma dels dos més petits és tres vegades la més gran augmentada en set?
Els nombres són -17, -15 i -13, que siguin n, n + 2 i n + 4. Com la suma de dos més petits, és a dir, n + n + 2 és tres vegades la més gran n + 4 per 7, tenim n + n + 2 = 3 (n + 4) +7 o 2n + 2 = 3n + 12 + 7 o 2n -3n = 19-2 o -n = 17 és a dir, n = -17 i els números són -17, -15 i -13.