
Resposta:
Explicació:
Per determinar el polinomi representat, multipliqueu-vos
F primer
O utsides
Jo nsides
L asts
Els primers termes en tots dos
El terme exterior en
El terme interior en
L’últim terme a
Afegiu tot això
Simplifiqueu la combinació de termes similars:
Tinc dos gràfics: un gràfic lineal amb un pendent de 0.781m / s, i un gràfic que augmenta a un ritme creixent amb un pendent mitjà de 0.724m / s. Què em diu sobre el moviment representat en els gràfics?

Atès que el gràfic lineal té un pendent constant, té una acceleració zero. L’altre gràfic representa l’acceleració positiva. L'acceleració es defineix com {Deltavelocity} / {Deltatime} Així, si teniu un pendent constant, no hi ha cap canvi de velocitat i el numerador és zero. Al segon gràfic, la velocitat està canviant, el que significa que l’objecte s’accelera
Quin ordre de magnitud està representat pel prefix giga?

El color (blau) (Giga) representa 10 ^ 9. Espero que això ajudi :)
Quan un polinomi es divideix per (x + 2), la resta és -19. Quan el mateix polinomi es divideix per (x-1), la resta és 2, com es determina la resta quan el polinomi es divideix per (x + 2) (x-1)?

Sabem que f (1) = 2 i f (-2) = - 19 del teorema restant troben ara la resta de polinomi f (x) quan es divideix per (x-1) (x + 2) la resta serà de la forma Ax + B, perquè és la resta després de la divisió per un quadràtic. Ara podem multiplicar els temps divisors del quocient Q ... f (x) = Q (x-1) (x + 2) + Ax + B A continuació, inseriu 1 i -2 per a x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Resolent aquestes dues equacions, obtenim A = 7 i B = -5 Resta = Ax + B = 7x-5