Quan és sin (x) = frac {24cos (x) - sqrt {576cos ^ 2 (x) +448}} {14}?

Quan és sin (x) = frac {24cos (x) - sqrt {576cos ^ 2 (x) +448}} {14}?
Anonim

Resposta:

# x = 2pin + -sin ^ -1 (4/5) ……. ninZZ #

Explicació:

#sin (x) = frac {24cos (x) - sqrt {576cos ^ 2 (x) +448}} {14} #

Reordenar-nos, # sqrt {576cos ^ 2 (x) +448} = 24cos (x) -14sin (x) #

Agrupar els costats i simplificar-los

# 16 + 24sin (x) cos (x) = 7sin ^ 2 (x) #

# => 16 + 24s (x) sqrt (1-sin ^ 2 (x)) = 7sin ^ 2 (x) #

# => 1-sin ^ 2 (x) = ((7s ^ 2 (x) -16) / (24sin (x))) ^ 2 #

Simplificant això, obtenim l’equació reductible de quàrtiques

# 625sin ^ 4 (x) -800sin ^ 2 (x) + 256 = 0 #

# => sin ^ 2 (x) = (800 + -sqrt ((800) ^ 2-4 * 625 * 256)) ((2 * 625) = 16/25 #

# => color (blau) (x = 2pin + -sin ^ -1 (4/5)) #