Resposta:
Aquests problemes impliquen una funció de derivació inversa
Explicació:
La funció exacta de trigueres inverses que voleu utilitzar depèn dels valors que s’ofereixen.
Sona com
Triangle XYZ és isòsceles. Els angles base, angle X i angle Y, són quatre vegades la mesura de l'angle de vèrtex, angle Z. Quina és la mesura de l'angle X?
Configureu dues equacions amb dues incògnites. Trobareu X i Y = 30 graus, Z = 120 graus. Ja sabeu que X = Y, això vol dir que podeu substituir Y per X o viceversa. Podeu calcular dues equacions: ja que hi ha 180 graus en un triangle, això significa: 1: X + Y + Z = 180 Substituït Y per X: 1: X + X + Z = 180 1: 2X + Z = 180 Nosaltres també pot fer una altra equació basada en que l’angle Z és 4 vegades més gran que l’angle X: 2: Z = 4X Ara, posem l’equació 2 en l’equació 1 substituint Z per 4x: 2X + 4X = 180 6X = 180 X = 30 Inserció aquest valor de X en la primera o la se
El vector A té una magnitud de 10 i apunta en la direcció x positiva. El vector B té una magnitud de 15 i fa un angle de 34 graus amb l'eix x positiu. Quina és la magnitud d’A-B?
8.7343 unitats. AB = A + (- B) = 10 / _0 ^ @ - 15 / _34 ^ @ = sqrt ((10-15cos34 ^ @) ^ 2+ (15sin34 ^ @) ^ 2) / _ tan ^ (- 1) ((- 15sin34 ^ @) / (10-15cos34 ^ @)) = 8.7343 / _73.808 ^ @. Per tant, la magnitud només és de 8.7343 unitats.
Deixeu l'angle entre dos vectors no nuls A (vector) i B (vector) ser 120 (graus) i el seu resultant sigui C (vector). Llavors, quin dels següents és (són) correctes?
Opció (b) bb A * bb B = abs bbA abs bbB cos (120 ^ o) = -1/2 abs bbA abs bbBC = bbA + bbB C ^ 2 = (bbA + bbB) * (bbA + bbB) = A ^ 2 + B ^ 2 + 2 bbA * bb B = A ^ 2 + B ^ 2 - abs bbA abs bbB qquad quadrat abs (bbA - bbB) ^ 2 = (bbA - bbB) * (bbA - bbB) = A ^ 2 + B ^ 2 - 2bbA * bbB = A ^ 2 + B ^ 2 + abs bbA abs bbB triangle qquad abs (bbA - bbB) ^ 2 - C ^ 2 = triangle - quadrat = 2 abs bbA abs bbB:. C ^ 2 lt abs (bbA - bbB) ^ 2, qquad bbA, bbB ne bb0:. abs bb C lt abs (bbA - bbB)