Resposta:
39 és el més gran dels 5 enters consecutius que sumen 185.
Explicació:
Primer, definim els 5 enters consecutius.
Podem anomenar el més petit dels 5 enters consecutius
Després, per definició de "enters consecutius", els 4 restants serien:
La suma d'aquests cinc enters sencers equival a 185, de manera que podem escriure i resoldre
Busquem el màxim dels 5 enters consecutius o
Tom va escriure tres números naturals consecutius. A partir de la suma de cubs d’aquests números, va treure el triple producte d'aquests números i es va dividir per la mitjana aritmètica d'aquests números. Quin nombre va escriure Tom?
El número final que va escriure Tom era de color (vermell). 9 Nota: la major part d’aquest depèn de la comprensió correcta del significat de diverses parts de la pregunta. 3 números naturals consecutius Suposo que es podria representar amb el conjunt {(a-1), a, (a + 1)} per a alguns a a la suma de cubs NN d’aquests números Suposo que es podria representar com a color (blanc) ( "XXX") (a-1) ^ 3 + a ^ 3 + (a + 1) ^ 3 de color (blanc) ("XXXXX") = a ^ 3-3a ^ 2 + 3a-1 (blanc) (") XXXXXx ") + un color ^ 3 (blanc) (" XXXXXx ") ul (+ a ^ 3 + 3a ^ 2 + 3a + 1) color (b
Conèixer la fórmula a la suma dels N enters A) quina és la suma dels primers ners enters consecutius quadrats, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Suma dels primers N sers sencers consecutius Sigma_ (k = 1) ^ N k ^ 3?
Per a S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Tenim sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 resolent per a suma_ {i = 0} ^ ni ^ 2 suma {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni però sum_ {i = 0} ^ ni = ((n + 1) n) / 2 així que sum_ {i = 0} ^ ni ^ 2 =
"Lena té 2 enters consecutius.Es nota que la seva suma és igual a la diferència entre els seus quadrats. Lena escull dos altres enters consecutius i nota la mateixa cosa. Demostrar algebraicament que això és cert per a 2 enters consecutius?
Si us plau, consulteu l'explicació. Recordem que els enters consecutius difereixen per 1. Per tant, si m és un sencer, llavors, l’enter sencer ha de ser n + 1. La suma d'aquests dos enters és n + (n + 1) = 2n + 1. La diferència entre els seus quadrats és (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, com es desitja! Sent la joia de les matemàtiques.