Resposta:
# {(x = (3sqrt (2) -2sqrt (3)) / (sqrt (6) -2)), (y = (sqrt (6) -2) / (sqrt (2) -sqrt (3))):} #
Explicació:
Des de #(1)# tenim
#sqrt (2) x + sqrt (3) y = 0 #
Dividir els dos costats de #sqrt (2) # Donan's
#x + sqrt (3) / sqrt (2) y = 0 "(*)" #
Si restem #'(*)'# de #(2)# obtenim
# x + y- (x + sqrt (3) / sqrt (2) i) = sqrt (3) -sqrt (2) - 0 #
# => (1-sqrt (3) / sqrt (2)) y = sqrt (3) -sqrt (2) #
# => y = (sqrt (3) -sqrt (2)) / (1-sqrt (3) / sqrt (2)) = (sqrt (6) -2) / (sqrt (2) -sqrt (3)) #
Si substituïm el valor que hem trobat # y # tornar a #'(*)'# obtenim
#x + sqrt (3) / sqrt (2) * (sqrt (6) -2) / (sqrt (2) -sqrt (3)) = 0
# => x + (3sqrt (2) -2sqrt (3)) / (2-sqrt (6)) = 0
# => x = - (3sqrt (2) -2sqrt (3)) / (2-sqrt (6)) = (3sqrt (2) -2sqrt (3)) / (sqrt (6) -2) #
Així, arribem a la solució
# {(x = (3sqrt (2) -2sqrt (3)) / (sqrt (6) -2)), (y = (sqrt (6) -2) / (sqrt (2) -sqrt (3))):} #