Resposta:
gràfic {y = 3x-4 -10, 10, -5, 5}
Explicació:
El menys quatre és on comenceu la línia a la pàgina
Resposta:
gràfic {3x-4 -10, 10, -5, 5}
Mireu l'explicació de com.
Explicació:
Bé, de manera que la inclinació de la línia és 3, el que significa que cada 1 unitat es mou cap a la dreta (eix x) es mou cap amunt 3 (eix Y). També teniu una intercepció y (també anomenada desplaçament vertical) de negatiu 4. En un gràfic normal sense el canvi, s’iniciaria a (0,0), però com que el teniu, el gràfic comença a (0, -4). Després d’aquest punt, el següent serà (1, -1), després (2,2), i així successivament.
Tomas va escriure l'equació y = 3x + 3/4. Quan Sandra va escriure la seva equació, van descobrir que la seva equació tenia totes les mateixes solucions que l'equació de Tomás. Quina equació podria ser de Sandra?
4y = 12x +3 12x-4y +3 = 0 Una equació es pot donar en moltes formes i encara significa el mateix. y = 3x + 3/4 "" (conegut com a forma de pendent / intercepció.) Multiplicat per 4 per eliminar la fracció que dóna: 4y = 12x +3 "" rarr 12x-4y = -3 "" (forma estàndard) 12x- 4y +3 = 0 "" (forma general) Totes es troben en la forma més senzilla, però també podríem tenir variacions infinites. 4y = 12x + 3 es podria escriure com: 8y = 24x +6 "" 12y = 36x +9, 20y = 60x +15 etc
Quina declaració descriu millor l’equació (x + 5) 2 + 4 (x + 5) + 12 = 0? L’equació és de forma quadràtica, ja que es pot reescriure com una equació quadràtica amb u u (x + 5). L’equació és de forma quadràtica perquè quan s’expandeix,
Com s’explica a continuació, la substitució de l’U la qualificarà de quadràtica en u. Per a quadràtics en x, la seva expansió tindrà la major potència de x com 2, la qualificarà millor com quadràtica en x.
Per què l'equació 4x ^ 2-25y ^ 2-24x-50y + 11 = 0 no pren la forma d'una hipèrbola, tot i que els termes quadrats de l'equació tenen signes diferents? A més, per què es pot posar aquesta equació en forma d’hipèrbola (2 (x-3) ^ 2) / 13 - (2 (i + 1) ^ 2) / 26 = 1
A la gent, que respon a la pregunta, tingueu en compte aquest gràfic: http://www.desmos.com/calculator/jixsqaffyw. A més, aquí teniu la feina per obtenir l’equació en forma d’una hipèrbola: