Com es valora la integral definitiva int (2t-1) ^ 2 de [0,1]?

Com es valora la integral definitiva int (2t-1) ^ 2 de [0,1]?
Anonim

Resposta:

#1/3#

Explicació:

# int_0 ^ 1 (2t-1) ^ 2dt #

Deixar #u = 2t-1 implica du = 2dt #

#therefore dt = (du) / 2 #

Transformant els límits:

#t: 0rarr1 implica u: -1rarr1 #

Integral es converteix en:

# 1 / 2int _ (- 1) ^ 1u ^ 2du = 1/2 1 / 3u ^ 3 _ (- 1) ^ 1 = 1/6 1 - (-1) = 1/3 #

Resposta:

#1/3#.

Explicació:

# int_0 ^ 1 (2t-1) ^ 2dt = int_0 ^ 1 (4t ^ 2-4t + 1) dt #

# = 4t ^ 3 / 3-4t ^ 2/2 + t _0 ^ 1 #

# = 4 / 3t ^ 3-2t ^ 2 + t _0 ^ 1 #

#=4/3-2+1-0#

#1/3#, tal com va derivar Euan S.!

Gaudeix de les matemàtiques..