Com ho fas completament: x ^ 8-9?

Com ho fas completament: x ^ 8-9?
Anonim

Resposta:

# x ^ 8-9 = (x-3 ^ (1/4)) (x + 3 ^ (1/4)) (x-i3 ^ (1/4)) (x + i3 ^ (1/4)) (x- (1 / sqrt (2) + i / sqrt (2)) 3 ^ (1/4)) (x + (1 / sqrt (2) + i / sqrt (2)) 3 ^ (1/4)) (x- (1 / sqrt (2) -i / sqrt (2)) 3 ^ (1/4)) (x + (1 / sqrt (2) -i / sqrt (2)) 3 ^ (1 / 4)) #

Explicació:

Utilitzant la factorització de la diferència de quadrats (# a ^ 2-b ^ 2 = (a-b) (a + b) #) Tu tens:

# x ^ 8-9 = (x ^ 4-3) (x ^ 4 + 3) #

Probablement siga tot el que volen, però podeu factoritzar encara més els números complexos:

# (x ^ 4-3) (x ^ 4 + 3) = #

# (x ^ 2-3 ^ (1/2)) (x ^ 2 + 3 ^ (1/2)) (x ^ 2-i3 ^ (1/2)) (x ^ 2 + i3 ^ (1 / 2)) = #

# (x-3 ^ (1/4)) (x + 3 ^ (1/4)) (x-i3 ^ (1/4)) (x + i3 ^ (1/4)) (x- (1) / sqrt (2) + i / sqrt (2)) 3 ^ (1/4)) (x + (1 / sqrt (2) + i / sqrt (2)) 3 ^ (1/4)) (x- (1 / sqrt (2) -i / sqrt (2)) 3 ^ (1/4)) (x + (1 / sqrt (2) -i / sqrt (2)) 3 ^ (1/4)) #

Les 8 arrels són les 8 solucions a: # x ^ 8 = 9 #

Resposta:

Factor # x ^ 8 - 9 #

Explicació:

# x ^ 8 - 9 = (x ^ 4 - 3) (x ^ 4 + 3) = #

= # (x ^ 2 - sqrt3) (x ^ 2 + sqrt3) (x ^ 4 + 3) #

= # (x - root (4) (3)) (x + root (4) (3)) (x ^ 2 + sqrt3) (x ^ 4 + 3) #