Resposta:
L’equació de la línia en forma d’interconnexió de talus és
Explicació:
La forma d’intercepció de pendent d’una línia és
Per a aquest problema se'ns dóna la inclinació tal com
Introduïm els valors i després solucionem els valors
intercepció y.
Ara aïlleu el fitxer
L’equació de la línia en forma d’interconnexió de talús es converteix en
Quina és la forma d’intercepció de pendents de la línia que passa per (12,7) amb un pendent de -1/5?
Y = -1 / 5x + 47/5 Pendent donat -1/5 Punt (12,7) La forma del punt de inclinació de la línia donada pendent m i punt (x_1, y_1) és y-y_1 = m (x-x_1 ) Anem a connectar els valors donats y-7 = -1 / 5 (x-12) Recordeu que això no és el que necessitem. Necessitem que l’equació estigui en forma d’intercepció de pendents. La forma d’intercepció de pendent: y = mx + b on m és la inclinació i b és la intercepció y. Ara hem de simplificar la nostra equació de forma de punt de pendent per obtenir la nostra resposta. y-7 = -1 / 5x + 12/5 quad distribució -1/5 Afegi
Quina és la forma d’intercepció de pendents de la línia amb un pendent de 7/4 i intercepció y de -2?
Y = 7/4 x -2 La forma d'intercepció de pendent de la línia és y = mx + b on m és la inclinació i b és intercepció y. Ens donen m = 7/4 i b = -2 els introduïm i obtenim la solució.
Escriviu la forma de pendent de l'equació amb el pendent donat que passa pel punt indicat. A.) la línia amb pendent -4 que passa per (5,4). i també B.) la línia amb pendent 2 que passa per (-1, -2). si us plau, ajuda, això és confús?
Y-4 = -4 (x-5) "i" y + 2 = 2 (x + 1)> "és l'equació d'una línia en" color (blau) "forma punt-pendent". • color (blanc) (x) y-y_1 = m (x-x_1) "on m és el pendent i" (x_1, y_1) "un punt de la línia" (A) "donat" m = -4 "i "(x_1, y_1) = (5,4)" substituint aquests valors a l'equació dóna "y-4 = -4 (x-5) larrcolor (blau)" en forma de punt-pendent "(B)" donat "m = 2 "i" (x_1, y_1) = (- 1, -2) y - (- 2)) 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (blau) " en forma d