Les dades següents mostren el nombre d’heures de son aconseguides durant una nit recent per a una mostra de 20 treballadors: 6,5,10,5,6,9,9,5,9,5,8,7,8,6, 9,8,9,6,10,8. Què és el mitjà? Quina és la variància? Quina és la desviació estàndard?

Les dades següents mostren el nombre d’heures de son aconseguides durant una nit recent per a una mostra de 20 treballadors: 6,5,10,5,6,9,9,5,9,5,8,7,8,6, 9,8,9,6,10,8. Què és el mitjà? Quina és la variància? Quina és la desviació estàndard?
Anonim

Resposta:

Mitjana = 7,4

Desviació estàndar #~~1.715#

Variació = 2,94

Explicació:

El significar és la suma de tots els punts de dades dividits pel nombre de punts de dades. En aquest cas, tenim

#(5+5+5+5+6+6+6+6+7+8+8+8+8+9+9+9+9+9+10+10)/20#

#=148/20#

#=7.4#

El desacord és "la mitjana de les distàncies quadrades de la mitjana."

El que això significa és que es resta cada punt de dades de la mitjana, es quadraran les respostes i, a continuació, les afegeixes totes i divideix-les per la quantitat de punts de dades. En aquesta pregunta, sembla així:

#4(5-7.4)#

#=4(-2.4)^2#

#=4(5.76)#

#=23.04#

Afegim un 4 davant dels claudàtors perquè hi ha quatre 5 en aquest conjunt de dades. A continuació, fem això a la resta de números:

#4(6-7.4)^2=7.84#

#1(7-7.4)^2=0.16#

#4(8-7.4)^2=1.44#

#5(9-7.4)^2=12.8#

#2(10-7.4)^2=13.52#

L’últim pas és afegir-los tots junts i després dividir-los per quants hi ha, que sembla així:

#(23.04+7.84+0.16+1.44+12.8+13.52)/20#

#=58.8/20#

#=2.94#, per tant, la variació és de 2,94

El desviació estàndar és fàcil, és simplement l’arrel quadrada de la variació, que és

# sqrt2.94 ~~ 1.715 #.

www.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/a/calculating-standard-deviation-step-by-step

Espero que t'ajudés!