Per a qualsevol equació quadràtica general de la forma
Per obtenir aquesta fórmula, utilitzarem completar el quadrat en l’equació general
Dividint-ho per tot arreu:
Ara pren el coeficient de x, la meitat, el quadrat, i afegeix-lo als dos costats i reordena per aconseguir-ho
Ara, a mà dreta, com a quadrat perfecte i simplifiqueu el costat dret.
Ara prenent l’arrel quadrada de tots dos costats:
Finalment, es resol la x per
El gràfic d’una funció quadràtica té intercepcions x-2 i 7/2, com escriviu una equació quadràtica que té aquestes arrels?
Trobeu f (x) = ax ^ 2 + bx + c = 0 coneixent les dues arrels reals: x1 = -2 i x2 = 7/2. Donades dues arrels reals c1 / a1 i c2 / a2 d’una equació quadràtica ax ^ 2 + bx + c = 0, hi ha 3 relacions: a1a2 = a c1c2 = c a1c2 + a2c1 = -b (suma diagonal). En aquest exemple, les 2 arrels reals són: c1 / a1 = -2/1 i c2 / a2 = 7/2. a = 12 = 2 c = -27 = -14 -b = a1c2 + a2c1 = -22 + 17 = -4 + 7 = 3. L'equació quadràtica és: Resposta: 2x ^ 2 - 3x - 14 = 0 (1) Comproveu: trobeu les 2 arrels reals de (1) pel nou mètode AC. Equació convertida: x ^ 2 - 3x - 28 = 0 (2). Resoldre l'equació
Quina declaració descriu millor l’equació (x + 5) 2 + 4 (x + 5) + 12 = 0? L’equació és de forma quadràtica, ja que es pot reescriure com una equació quadràtica amb u u (x + 5). L’equació és de forma quadràtica perquè quan s’expandeix,
Com s’explica a continuació, la substitució de l’U la qualificarà de quadràtica en u. Per a quadràtics en x, la seva expansió tindrà la major potència de x com 2, la qualificarà millor com quadràtica en x.
Per què es pot resoldre tota equació quadràtica fent servir la fórmula quadràtica?
Atès que la fórmula quadràtica es deriva del completar el mètode quadrat, que sempre funciona. Tingueu en compte que el factoring sempre funciona també, però de vegades és molt difícil fer-ho. Espero que això sigui útil.