Com es diferencia de f (x) = (5e ^ x + tanx) (x ^ 2-2x) utilitzant la regla del producte?
F '(x) = (5e ^ x + sec ^ 2x) (x ^ 2-2x) + (5e ^ x + tanx) (2x-2) Per f (x) = (5e ^ x + tanx) (x ^ 2-2x), trobem f '(x) fent: f' (x) = d / dx [5e ^ x + tanx] (x ^ 2-2x) + (5e ^ x + tanx) d / dx [x ^ 2-2x] f '(x) = (5e ^ x + sec ^ 2x) (x ^ 2-2x) + (5e ^ x + tanx) (2x-2)
Com proveu Sec (2x) = sec ^ 2x / (2-sec ^ 2x)?
Prova a continuació Fórmula de doble angle per a cos: cos (2A) = cos ^ A-sin ^ a o = 2cos ^ 2A - 1 o = 1 - 2sin ^ 2A Aplicant això: sec2x = 1 / cos (2x) = 1 / (2cos ^ 2x-1), després divideix la part superior i la inferior per cos ^ 2x, = (seg ^ 2x) / (2-sec ^ 2x)
Com simplifiqueu (sec ^ 4x-1) / (sec ^ 4x + sec ^ 2x)?
Apliqueu una identitat pitagòrica i unes tècniques de factoring en parella per simplificar l'expressió de sin ^ 2x. Recordem la important identitat pitagòrica 1 + tan ^ 2x = sec ^ 2x. La necessitarem per a aquest problema. Comencem amb el numerador: sec ^ 4x-1 Tingueu en compte que es pot tornar a escriure com: (sec ^ 2x) ^ 2- (1) ^ 2 Això s’adapta a la forma d’una diferència de quadrats, a ^ 2-b ^ 2 = (ab) (a + b), amb a = sec ^ 2x i b = 1. Factora en: (sec ^ 2x-1) (sec ^ 2x + 1) A partir de la identitat 1 + tan ^ 2x = sec ^ 2x, podem veure que la resta de tots dos costats ens dóna t