Resposta:
Explicació:
Deixar la longitud
i l’amplada serà
Se'ns diu
així que la zona,
però també se'ns diu que la zona és
Tan
No és possible una longitud negativa, de manera que l’única possibilitat vàlida és
i, des de
La longitud d'un rectangle és de 4 polzades més que la seva amplada. Si es prenen 2 polzades de la longitud i s’afegeixen a l’amplada i la figura es converteix en un quadrat amb una àrea de 361 polzades quadrades. Quines són les dimensions de la figura original?
He trobat una longitud de 25 "in" i una amplada de 21 "in". He provat això:
Quina és la taxa de canvi de l’amplada (en peus / seg) quan l’alçada és de 10 peus, si l’alç està disminuint en aquell moment a una velocitat d’1 ft / seg.Un rectangle té una alçada canviant i un ample de canvi , però l’altura i l’amplada canvien de manera que l’àrea del rectangle sigui sempre de 60 peus quadrats?
La taxa de canvi de l’amplada amb el temps (dW) / (dt) = 0,6 "peus / s" (dW) / (dt) = (dW) / (dh) xx (dh) / dt (dh) / (dt ) = - 1 "peus / s" Així (dW) / (dt) = (dW) / (dh) xx-1 = - (dW) / (dh) Wxxh = 60 W = 60 / h (dW) / ( dh) = - (60) / (h ^ 2) Així (dW) / (dt) = - (- (60) / (h ^ 2)) = (60) / (h ^ 2) Així que quan h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "peus / s"
Originalment, un rectangle era el doble de llarg que ample. Quan es van afegir 4 m a la seva longitud i es van restar 3 m de la seva amplada, el rectangle resultant tenia una superfície de 600 m ^ 2. Com trobeu les dimensions del nou rectangle?
Amplada original = 18 metres Longitud original = 36 mtres El truc amb aquest tipus de pregunta és fer un esbós ràpid. D'aquesta manera podeu veure el que passa i idear un mètode de solució. Conegut: l’àrea és "amplada" xx "longitud" => 600 = (w-3) (2w + 4) => 600 = 2w ^ 2 + 4w-6w-12 Resta 600 dels dos costats => 2w ^ 2-2w -612 = 0 => (2w-36) (w + 17) = 0 => w = -17 No és lògic que una longitud sigui negativa en aquest context de manera que w! = - 17 w = 18 => L = 2xx18 = 36 '~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Revisa (36 + 4) (18-3) = 40xx1