Resposta:
Vegeu un procés de solució a continuació:
Explicació:
Una fórmula per a aquest problema és:
On:
Substituir i calcular
La temperatura de la peça de metall després de 6 minuts seria
Per mantenir-se correctament hidratada, una persona ha de beure 32 unces d’aigua per cada 60 minuts d’exercici. Quina quantitat d’aigua hauria de beure Dallan si viatja en bicicleta durant 135 minuts?
72 60 + 60 + 15 = 135 minuts 32 + 32 + (32/4) = 72 unces de fluids
Juanita està regant la seva gespa utilitzant la font d’aigua en un dipòsit d’aigua de pluja. El nivell d’aigua del tanc s’apropa 1/3 cada 10 minuts. Si el nivell del tanc és de 4 peus, quants dies pot Juanita aigua si s’aigua durant 15 minuts cada dia?
Mirar abaix. Hi ha un parell de maneres de solucionar-ho. Si el nivell cau 1/3 en 10 minuts, després cau: (1/3) / 10 = 1/30 en 1 minut. En 15 minuts caure 15/30 = 1/2 2xx1 / 2 = 2 Així que quedarà buit al cap de 2 dies. O d'una altra manera. Si cau 1/3 en 10 minuts: 3xx1 / 3 = 3xx10 = 30minuts 15 minuts al dia és: 30/15 = 2 dies
L’aigua surt d’un dipòsit cònic invertit a una velocitat de 10.000 cm3 / min al mateix temps que l’aigua es bomba al dipòsit a un ritme constant. Si el dipòsit té una alçada de 6 mi el diàmetre a la part superior és de 4 mi si el nivell de l'aigua augmenta a una velocitat de 20 cm / min quan l'alçada de l'aigua és de 2 m, com es troba la velocitat amb què es bomba aigua al tanc?
Sigui V el volum d’aigua del dipòsit, en cm ^ 3; sigui h la profunditat / alçada de l’aigua, en cm; i sigui r el radi de la superfície de l'aigua (a la part superior), en cm. Atès que el tanc és un con invertit, també ho és la massa d’aigua. Atès que el dipòsit té una alçada de 6 mi un radi a la part superior de 2 m, els triangles similars impliquen que frac {h} {r} = frac {6} {2} = 3 de manera que h = 3r. El volum del con invertit de l’aigua és llavors V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Diferenciï ara tots dos costats respecte al temps t (en min