El recíproc de la meitat d'un nombre augmentat a la meitat el recíproc del nombre és 1/2. quin és el número?
5 Deixeu que el nombre sigui igual x. La meitat del nombre és llavors x / 2 i la recíproca d’aquest és 2 / x El recíproc del nombre és 1 / x i la meitat que és 1 / (2x) i després 2 / x + 1 / (2x) = 1/2 ( 4x + x) / (2x ^ 2) = 1/2 10x = 2x ^ 2 2x ^ 2 -10x = 0 2x (x-5) = 0 La solució zero no és viable ja que la seva recíproca és infinit. La resposta és, per tant, x = 5
La suma dels dígits d’un nombre de dos dígits és 10. Si s’inverteixen els dígits, es formarà un nou número. El nou número és un menys del doble del nombre original. Com es troba el número original?
El nombre d’originals era de 37. M i n siguin el primer i el segon dígits respectivament del nombre original. Se'ns diu que: m + n = 10 -> n = 10-m [A] Ara. per formar el nou número hem de revertir els dígits. Com que podem suposar que els dos números siguin decimals, el valor del nombre original és de 10xxm + n [B] i el nou nombre és: 10xxn + m [C] També se'ns diu que el nou nombre és el doble del nombre original menys 1 Combinant [B] i [C] -> 10n + m = 2 (10m + n) -1 [D] Substituint [A] a [D] -> 10 (10-m) + m = 20m +2 (10 -m) -1 100-10m + m = 20m + 20-2m-1 100-9m =
La suma de dos números consecutius és de 77. La diferència de la meitat del nombre més petit i un terç del nombre més gran és 6. Si x és el nombre més petit i y és el nombre més gran, que dues equacions representen la suma i la diferència de els números?
X + y = 77 1 / 2x-1 / 3y = 6 Si voleu conèixer els números que podeu seguir llegint: x = 38 y = 39