Resposta:
Divideix l'àrea de superfície pel volum
Explicació:
Dimensions del prisma rectangular
Ample = w
Alçada = h
Longitud = l
superfície (S) =
volum (V) =
Relació superfície amb volum =
Per a un prisma d'ample 2, longitud 2 i altura 4
La superfície seria
El volum seria
La relació superfície amb volum seria de 2,5
La superfície de joc en el joc de curling és una fulla de gel rectangular amb una superfície d’uns 225 m ^ 2. L’amplada és d’uns 40 m menys que la longitud. Com trobeu les dimensions aproximades de la superfície de joc?
Expresseu l'amplada en termes de longitud, a continuació, substituïu i solucioneu per arribar a les dimensions de L = 45m i W = 5m. Comencem amb la fórmula d'un rectangle: A = LW: se'ns dóna la zona i sabem que l'amplada és de 40 metres menys de la longitud. Escrivim la relació entre L i W cap avall: W = L-40 I ara podem resoldre A = LW: 225 = L (L-40) 225 = L ^ 2-40L Vaig a restar L ^ 2-40L des d'ambdós costats, a continuació, multipliqueu per -1 de manera que L ^ 2 sigui positiu: L ^ 2-40L-225 = 0 Ara anem a factoritzar i resoldre L: (L-45) (L + 5) = 0 (L-45 ) =
El volum d'un prisma rectangular és (100x ^ 16y ^ 12z ^ 2). Si la longitud del prisma és 4x ^ 2y ^ 2 i la seva amplada és (5x ^ 8y ^ 7z ^ -2), com es troba l'alçada del prisma y?
5x ^ 6y ^ 3z ^ 4 width * length (4x ^ 2y ^ 2) (5x ^ 8y ^ 7z ^ -2) = 20x ^ 10y ^ 9z ^ -2 alçada = volum ÷ ample multiplicat per longitud (100x ^ 16y ^ 12z ^ 2) / (20x ^ 10y ^ 9z ^ -2 = 5x ^ 6y ^ 3z ^ 4 = h comprovar volum = amplada multiplicada per longitud multiplicada per alçada (5x ^ 8y ^ 7z ^ -2) (4x ^ 2y ^ 2) (5x ^ 6y ^ 3z ^ 4) = 100x ^ 16y ^ 12z ^ 2
La densitat del nucli d'un planeta és rho_1 i la de la capa exterior és rho_2. El radi del nucli és R i el del planeta és 2R. El camp gravitacional a la superfície exterior del planeta és igual que a la superfície del nucli, que és la proporció rho / rho_2. ?
3 Suposem, la massa del nucli del planeta és m i la de la capa exterior és m 'Així, el camp a la superfície del nucli és (Gm) / R ^ 2 I, a la superfície de la closca serà (G) (m + m ')) / (2R) ^ 2 Donat, tots dos són iguals, per tant, (Gm) / R ^ 2 = (G (m + m')) / (2R) ^ 2 o, 4m = m + m 'o, m' = 3m ara, m = 4/3 pi R ^ 3 rho_1 (massa = volum * densitat) i, m '= 4/3 pi ((2R) ^ 3 -R ^ 3) rho_2 = 4 / 3 pi 7R ^ 3 rho_2 Per tant, 3m = 3 (4/3 pi R ^ 3 rho_1) = m '= 4/3 pi 7R ^ 3 rho_2 Així, rho_1 = 7/3 rho_2 o, (rho_1) / (rho_2 ) = 7/3