Resposta:
Explicació:
Coordenada de P:
Com que t es troba en el quadrant 4, llavors, sin t és negatiu
Resposta:
Des de
Explicació:
En aquest problema només ens demanen
Els estudiants haurien de reconèixer immediatament Els dos triangles cansats de Trig. Trig sol utilitzar només dos triangles, és a dir, 30/60/90, els pits i els cosinus dels diferents quadrants són
En realitat, dos triangles per a un curs sencer no són tan importants per memoritzar. Regla d'or:
Res d'això va importar per a aquest problema en particular, així que acabaré aquí.
Sigui vec (x) un vector, tal que vec (x) = ( 1, 1), "i deixeu que" R (θ) = [(costheta, -sintheta), (sintheta, costheta)], això sigui, la rotació Operador. Per a theta = 3 / 4pi trobeu vec (y) = R (theta) vec (x)? Feu un esbós que mostri x, y i θ?
Això resulta ser una rotació en sentit antihorari. Es pot endevinar per quants graus? Sigui T: RR ^ 2 | -> RR ^ 2 una transformació lineal, on T (vecx) = R (theta) vecx, R (theta) = [(costheta, -sintheta), (sintheta, costheta)], vecx = << -1,1 >>. Tingueu en compte que aquesta transformació es va representar com a matriu de transformació R (theta). El que significa és que R és la matriu de rotació que representa la transformació rotacional, podem multiplicar R per vecx per aconseguir aquesta transformació. [(costheta, -sintheta), (sintheta, costheta)] xx <
Gregory va dibuixar un rectangle ABCD en un pla de coordenades. El punt A és a (0,0). El punt B es troba a (9,0). El punt C es troba a (9, -9). El punt D és a (0, -9). Troba la longitud del CD lateral?
CD lateral = 9 unitats Si ignorem les coordenades y (el segon valor de cada punt), és fàcil dir que, atès que el CD lateral comença a x = 9 i acaba en x = 0, el valor absolut és 9: | 0 - 9 | = 9 Recordeu que les solucions als valors absoluts són sempre positives Si no enteneu per què això és, també podeu utilitzar la fórmula de distància: P_ "1" (9, -9) i P_ "2" (0, -9 ) En la següent equació, P_ "1" és C i P_ "2" és D: sqrt ((x_ "2" -x_ "1") ^ 2+ (y_ "2" -y_ "1") ^
La matèria es troba en estat líquid quan la seva temperatura es troba entre el punt de fusió i el punt d'ebullició? Suposem que alguna substància té un punt de fusió de 47,42 ° C i un punt d’ebullició de 364,76 ° C.
La substància no estarà en estat líquid en el rang -273,15 C ^ o (zero absolut) a -47,42C ^ o i la temperatura per sobre de 364.76C ^ o La substància estarà en estat sòlid a la temperatura per sota del seu punt de fusió i serà l'estat gasós a la temperatura superior al seu punt d’ebullició. Per tant, serà líquid entre el punt de fusió i el punt d’ebullició.