Resposta:
Explicació:
# "tingueu en compte que els números imparells consecutius tenen una diferència"
# "2 entre ells" # #
# "deixeu que els 2 números siguin" n "i" n + 2 #
# rArrn + n + 2 = -108larrcolor (blau) "suma de nombres" #
# rArr2n + 2 = -108 #
# "restar" 2 "dels dos costats" #
# rArr2n = -110rArrn = -55 #
# "i" n + 2 = -55 + 2 = -53 #
# "els 2 números són" -55 "i" -53 #
El producte de dos enters parells consecutius és 24. Cerqueu els dos enters. Respon primer en forma de punts aparellats amb el més baix dels dos enters. Resposta?
Els dos enters parells consecutius: (4,6) o (-6, -4) Deixen, el color (vermell) (n i n-2 ser els dos enters parells consecutius, on el color (vermell) (n inZZ Producte de n i n-2 és 24, és a dir n (n-2) = 24 => n ^ 2-2n-24 = 0 ara, [(-6) + 4 = -2 i (-6) xx4 = -24]: .n ^ 2-6n + 4n-24 = 0: .n (n-6) +4 (n-6) = 0:. (N-6) (n + 4) = 0: .n-6 = 0 o n + 4 = 0 ... a [n inZZ] => color (vermell) (n = 6 o n = -4 (i) color (vermell) (n = 6) => color (vermell) (n-2) = 6-2 = color (vermell) (4) Així, els dos enters parells consecutius: (4,6) (ii)) color (vermell) (n = -4) => color (vermell) (n-2) = -4-2 = color
El producte de dos enters imparells consecutius és 29 menys de 8 vegades la seva suma. Cerqueu els dos enters. Respon primer en forma de punts aparellats amb el més baix dels dos enters?
(13, 15) o (1, 3) Siguin x i x + 2 els nombres senars consecutius, llavors, segons la pregunta, tenim (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 o 1 Ara, CASE I: x = 13:. x + 2 = 13 + 2 = 15:. Els números són (13, 15). CAS II: x = 1:. x + 2 = 1+ 2 = 3:. Els números són (1, 3). Per tant, ja que aquí es formen dos casos; el parell de nombres pot ser (13, 15) o (1, 3).
"Lena té 2 enters consecutius.Es nota que la seva suma és igual a la diferència entre els seus quadrats. Lena escull dos altres enters consecutius i nota la mateixa cosa. Demostrar algebraicament que això és cert per a 2 enters consecutius?
Si us plau, consulteu l'explicació. Recordem que els enters consecutius difereixen per 1. Per tant, si m és un sencer, llavors, l’enter sencer ha de ser n + 1. La suma d'aquests dos enters és n + (n + 1) = 2n + 1. La diferència entre els seus quadrats és (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, com es desitja! Sent la joia de les matemàtiques.