Resposta:
El primer pas és trobar el degradat (pendent), després l’interconnexió y. En aquest cas, l’equació és
Explicació:
Primer trobeu el pendent. Per punts
(no importa quin punt tractem com 1 i 2, el resultat serà el mateix)
Ara que coneixem el gradient podem calcular l’interconnexió. La forma estàndard de l’equació d’una línia és
Si utilitzem el pendent que calculem i un dels punts que ens van donar, obtindrem:
Reorganització:
Posant-ho tot junt, l’equació de la línia és:
Només per comprovar, podríem substituir en el
L’equació d’una línia és 2x + 3y - 7 = 0, trobem: - (1) pendent de la línia (2) l’equació d'una línia perpendicular a la línia donada i que passa per la intersecció de la línia x-y + 2 = 0 i 3x + y-10 = 0?
-3x + 2y-2 = 0 color (blanc) ("ddd") -> color (blanc) ("ddd") y = 3 / 2x + 1 Primera part de molts detalls que demostren com funcionen els primers principis. Un cop acostumats a aquestes i utilitzar dreceres, utilitzaràs molt menys línies. color (blau) ("Determineu la intercepció de les equacions inicials") x-y + 2 = 0 "" ....... Equació (1) 3x + y-10 = 0 "" .... Equació ( 2) Restar x dels dos costats de l'Eqn (1) donant -y + 2 = -x Multiplica els dos costats per (-1) + y-2 = + x "" .......... Equació (1_a ) Utilitzant Eqn (1_a
Una línia passa per (8, 1) i (6, 4). Una segona línia passa per (3, 5). Quin és un altre punt en què pot passar la segona línia si és paral·lela a la primera línia?
(1,7) Per tant, primer hem de trobar el vector de direcció entre (8,1) i (6,4) (6,4) - (8,1) = (- 2,3) Sabem que una equació vectorial està format per un vector de posició i un vector de direcció. Sabem que (3,5) és una posició sobre l’equació vectorial perquè puguem utilitzar-la com a vector de posició i sabem que és paral·lela a l’altra línia de manera que podem utilitzar aquest vector de direcció (x, y) = (3 4) + s (-2,3) Per trobar un altre punt a la línia només heu de substituir qualsevol nombre en s, excepte 0 (x, y) = (3,4) +1 (-2,3) = (
Una línia passa per (4, 3) i (2, 5). Una segona línia passa per (5, 6). Quin és un altre punt en què pot passar la segona línia si és paral·lela a la primera línia?
(3,8) Per tant, primer hem de trobar el vector de direcció entre (2,5) i (4,3) (2,5) - (4,3) = (- 2,2) Sabem que una equació vectorial està format per un vector de posició i un vector de direcció. Sabem que (5,6) és una posició sobre l’equació vectorial de manera que podem utilitzar-la com a vector de posició i sabem que és paral·lela a l’altra línia de manera que podem utilitzar aquest vector de direcció (x, y) = (5, 6) + s (-2,2) Per trobar un altre punt a la línia només heu de substituir qualsevol nombre en s, excepte 0, de manera que trieu 1 (x,