Resposta:
Vegeu tot el procés de solució següent:
Explicació:
La fórmula de la inclinació puntual indica:
On?
Substituint el pendent i els valors des del punt del problema dóna:
El nombre de milles que viatja al vaixell d'Abigail, m, varia directament amb la quantitat de temps que Abigail passa amb la navegació, t. Si passa 2 hores en el seu vaixell, viatja 19 milles. Com modela això amb una variació lineal directa?
M = 19 / 2t> "la declaració inicial és" mpropt "per convertir una equació multiplicar per k la constant de" "variació" m = kt "per trobar k usa la condició donada" t = 2, m = 19 m = ktrArrk = m / t = 19/2 "l’equació és" m = 19 / 2t
Sigui P (x_1, y_1) un punt i sigui l la línia amb l'equació ax + per + c = 0.Mostra la distància d de P-> l donada per: d = (ax_1 + per_1 + c) / sqrt (a ^ 2 + b ^ 2)? Trobeu la distància d del punt P (6,7) de la línia l amb l’equació 3x + 4y = 11?
D = 7 Deixem l '> a x + b y + c = 0 i p_1 = (x_1, y_1) un punt no sobre l. Suposant que b ne 0 i crida d ^ 2 = (x-x_1) ^ 2 + (y-y_1) ^ 2 després de substituir y = - (a x + c) / b a d ^ 2 tenim d ^ 2 = ( x - x_1) ^ 2 + ((c + ax) / b + y_1) ^ 2. El següent pas és trobar el mínim d ^ 2 pel que fa a x, de manera que trobarem x tal que d / (dx) (d ^ 2) = 2 (x - x_1) - (2 a ((c + ax) / b + y_1 )) / b = 0. Això ocorre per x = (b ^ 2 x_1 - ab y_1-ac) / (a ^ 2 + b ^ 2) Ara, substituint aquest valor a d ^ 2 obtenim d ^ 2 = (c) + a x_1 + b y_1) ^ 2 / (a ^ 2 + b ^ 2) d = (c + a x_1 + b y_1) / sqrt (a
Quina declaració descriu millor l’equació (x + 5) 2 + 4 (x + 5) + 12 = 0? L’equació és de forma quadràtica, ja que es pot reescriure com una equació quadràtica amb u u (x + 5). L’equació és de forma quadràtica perquè quan s’expandeix,
Com s’explica a continuació, la substitució de l’U la qualificarà de quadràtica en u. Per a quadràtics en x, la seva expansió tindrà la major potència de x com 2, la qualificarà millor com quadràtica en x.