Resposta:
Explicació:
………i per tant
Resposta:
Explicació:
Hi ha diversos mètodes que podeu utilitzar per trobar aproximacions racionals.
Heus aquí un mètode basat en el mètode babilònic …
Per trobar l’arrel quadrada d’un nombre
A continuació, apliqueu les següents fórmules repetidament per obtenir millors aproximacions:
# {(p_ (i + 1) = p_i ^ 2 + n q_i ^ 2), (q_ (i + 1) = 2 p_i q_i):}
En el nostre exemple, anem
# {(p_1 = p_0 ^ 2 + n q_0 ^ 2 = 8 ^ 2 + 67 * 1 ^ 2 = 64 + 67 = 131), (q_1 = 2 p_0 q_0 = 2 * 8 * 1 = 16):} #
# {(p_2 = p_1 ^ 2 + n q_1 ^ 2 = 131 ^ 2 + 67 * 16 ^ 2 = 17161 + 17152 = 34313), (q_2 = 2 p_1 q_1 = 2 * 131 * 16 = 4192):} #
Si ens aturem aquí, tenim:
#sqrt (67) ~~ 34313/4192 ~~ 8.185353 #
que és exacta
Quina és la forma simplificada de l'arrel quadrada de l'arrel quadrada de 10 de 5 sobre l'arrel quadrada de 10 + arrel quadrada de 5?
(sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) = 3-2sqrt (2) (sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) ) color (blanc) ("XXX") = cancel (sqrt (5)) / cancel (sqrt (5)) * (sqrt (2) -1) / (sqrt (2) +1) color (blanc) (") XXX ") = (sqrt (2) -1) / (sqrt (2) +1) * (sqrt (2) -1) / (sqrt (2) -1) color (blanc) (" XXX ") = ( sqrt (2) -1) ^ 2 / ((sqrt (2) ^ 2-1 ^ 2) color (blanc) ("XXX") = (2-2sqrt2 + 1) / (2-1) color (blanc) ("XXX") = 3-2sqrt (2)
Quina és l'arrel quadrada de 3 + l'arrel quadrada de 72 - l'arrel quadrada de 128 + l'arrel quadrada de 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Sabem que 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, de manera que sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Sabem que 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, de manera que sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Sabem que 128 = 2 ^ 7 , per tant sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Simplificació de 7sqrt (3) - 2sqrt (2)
Quina és l'arrel quadrada de 7 + arrel quadrada de 7 ^ 2 + arrel quadrada de 7 ^ 3 + arrel quadrada de 7 ^ 4 + arrel quadrada de 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) El primer que podem fer és cancel·lar les arrels amb les potències parells. Des de: sqrt (x ^ 2) = x i sqrt (x ^ 4) = x ^ 2 per a qualsevol nombre, podem dir que sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Ara, 7 ^ 3 poden ser reescrits com 7 ^ 2 * 7, i que 7 ^ 2 pot sortir de l’arrel! El mateix s'aplica a 7 ^ 5 però es reescriu com 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) Ara