Resposta:
Explicació:
El producte creuat d'aquests dos vectors estarà en una direcció adequada, de manera que per trobar un vector unitari podem prendre el producte creuat i després dividir per la longitud …
# (i-2j + 3k) xx (i + 7j + 4k) = abs ((i, j, k), (1, -2, 3), (1, 7, 4)) #
#color (blanc) ((i-2j + 3k) xx (i + 7j + 4k)) = abs ((- 2, 3), (7, 4)) i + abs ((3,1), (4), 1)) j + abs ((1, -2), (1, 7)) k #
#color (blanc) ((i-2j + 3k) xx (i + 7j + 4k)) = -29i-j + 9k #
Llavors:
#abs (abs (-29i-j + 9k)) = sqrt (29 ^ 2 + 1 ^ 2 + 9 ^ 2) = sqrt (841 + 1 + 81) = sqrt (923) #
Per tant, un vector unitari adequat és:
# 1 / sqrt (923) (- 29i-j + 9k) #
Quin és el vector unitari normal del pla que conté <1,1,1> i <2,0, -1>?
El vector unitari és = 1 / sqrt14 〈-1,3, -2〉 Cal fer el producte creuat dels dos vectors per obtenir un vector perpendicular al pla: el producte creuat és el deteminat de ((veci, vecj, veck), (1,1,1), (2,0, -1)) = veci (-1) -vecj (-1-2) + veck (-2) = 〈- 1,3, -2 〉 Comprovem els productes de punt. , -1,3, -2〉. 〈1,1,1〉 = - 1 + 3-2 = 0 〈-1,3, -2〉. 〈2,0, -1〉 = - 2 + 0 + 2 = 0 A mesura que els productes de punts són = 0, conclouem que el vector és perpendicular al pla. vecv = sqrt (1 + 9 + 4) = sqrt14 El vector unitat és hatv = vecv / ( vecv ) = 1 / sqrt14 〈-1,3, -2
Quin és el vector unitari normal del pla que conté (2i - 3 j + k) i (2i + j - 3k)?
Vecu = <(sqrt (3)) / 3, (sqrt (3)) / 3, (sqrt (3)) / 3> Un vector que és normal (ortogonal, perpendicular) a un pla que conté dos vectors és també normal a tots dos vectors donats. Podem trobar el vector normal prenent el producte creuat dels dos vectors donats. A continuació, podem trobar un vector unitari en la mateixa direcció que aquest vector. Primer, escriviu cada vector en forma de vector: veca = <2, -3,1> vecb = <2,1, -3> El producte creuat, vecaxxvecb es troba per: vecaxxvecb = abs ((veci, vecj, veck), (2, -3,1), (2,1, -3)) Per al component i, tenim: (-3 * -3) - (1 *
Quin és el vector unitari normal del pla que conté 3i + 7j-2k i 8i + 2j + 9k?
El vector unitari normal al pla és (1 / 94.01) (67hati-43hatj + 50hatk). Considerem vecA = 3hati + 7hatj-2hatk, vecB = 8hati + 2hatj + 9hatk El normal al pla vecA, vecB no és més que el vector perpendicular, és a dir, producte creuat de vecA, vecB. => vecAxxvecB = hati (63 + 4) -hatj (27 + 16) + hatk (6-56) = 67hati-43hatj + 50hatk. El vector unitari normal al pla és + - [vecAxxvecB // (| vecAxxvecB |)] Així | vecAxxvecB | = sqrt [(67) ^ 2 + (- 43) ^ 2 + (50) ^ 2] = sqrt8838 = 94,01 ~~ 94 Ara substituïu tots els que es troben a l'equació anterior, obtenim un vector d'unita