Resposta:
Longitud dels costats originals:
Explicació:
Deixar
Se'ns diu
Per tant
Aplicant la fórmula quadràtica:
(amb una mica d'aritmètica)
obtenim:
però com que la longitud d’un costat ha de ser
només
La longitud de cada costat del quadrat A s'incrementa en un 100 per cent per fer quadrat B. Llavors cada costat del quadrat s'incrementa en un 50 per cent per fer el quadrat C. Per quin percentatge és l'àrea del quadrat C major que la suma de les àrees de quadrat A i B?
L'àrea de C és un 80% superior a la superfície de l'àrea A + de B Definir com a unitat de mesura la longitud d’un costat d’A. Àrea d = 1 ^ 2 = 1 sq.unit La longitud dels costats de B és 100% més que la longitud dels costats d’A rarr. Longitud dels costats de B = 2 unitats. Àrea de B = 2 ^ 2 = 4 unitats quadrades. La longitud dels costats de C és un 50% més que la longitud dels costats de B rarr. Longitud de costats de C = 3 unitats. Àrea de C = 3 ^ 2 = 9 metres quadrats. L'àrea de C és 9- (1 + 4) = 4 unitats superiors a les àrees combinades d
L’amplada i la longitud d’un rectangle són enters parells consecutius. Si l’amplada disminueix en 3 polzades. llavors l'àrea del rectangle resultant és de 24 polzades quadrades. Quina és l'àrea del rectangle original?
48 "polzades quadrades" "deixen que l’amplada" = n "llavors la longitud" = n + 2 n "i" n + 2color (blau) "siguin sencers sencers consecutius l’amplada es redueix amb l’amplada" 3 "polzades" rArr " "= n-3" àrea "=" longitud "xx" amplada "rArr (n + 2) (n-3) = 24 rArrn ^ 2-n-6 = 24 rArrn ^ 2-n-30 = 0larrcolor (blau) "en forma estàndard", els factors de - 30, que suma a - 1 són + 5 i - 6 "rArr (n-6) (n + 5) = 0" igualen cada factor a zero i resolen n "n-6 = 0rArrn = 6 n + 5 = 0rArn = -5 n&
Dos costats oposats d'un paral·lelogram tenen longituds de 3. Si una cantonada del paral·lelogram té un angle de pi / 12 i l'àrea del paral·lelogram és de 14, quant de temps són els altres dos costats?
Assumint una mica de trigonometria bàsica ... Sigui x la longitud (comuna) de cada costat desconegut. Si b = 3 és la mesura de la base del paral·lelogram, h sigui la seva alçada vertical. L’àrea del paral·lelogram és bh = 14 Atès que es coneix b, tenim h = 14/3. Des de Trig bàsic, sin (pi / 12) = h / x. Podem trobar el valor exacte del sinus utilitzant una fórmula de mig angle o diferència. sin (pi / 12) = sin (pi / 3 - pi / 4) = sin (pi / 3) cos (pi / 4) - cos (pi / 3) sin (pi / 4) = (sqrt6 - sqrt2) / 4. Així ... (sqrt6 - sqrt2) / 4 = h / xx (sqrt6 - sqrt2) = 4h