Resposta:
Explicació:
Podem veure que si dividim un triangle equilàter a la meitat, ens quedem amb dos triangles equilàters congruents. Per tant, una de les cames del triangle és
Si volem determinar l'àrea de tot el triangle, ho sabem
Sabem que l'àrea del seu triangle equilàter és
Podem establir la nostra equació d’àrea igual a
La longitud d'una caixa és de 2 centímetres menys que la seva alçada. l'amplada de la caixa és de 7 centímetres més que la seva alçada. Si la caixa tenia un volum de 180 centímetres cúbics, quina és la seva superfície?
Deixeu que l'alçada de la caixa sigui h cm Llavors la seva longitud serà (h-2) cm i la seva amplada serà (h + 7) cm, així que per la condició del problema (h-2) xx (h + 7) xxh = 180 => (h ^ 2-2h) xx (h + 7) = 180 => h ^ 3-2h ^ 2 + 7h ^ 2-14h-180 = 0 => h ^ 3 + 5h ^ 2-14h- 180 = 0 Per a h = 5 LHS es fa zero Per tant (h-5) és el factor de LHS, de manera que h ^ 3-5h ^ 2 + 10h ^ 2-50h + 36h-180 = 0 => h ^ 2 (h-5) + 10h (h-5) +36 (h-5) = 0 => (h-5) (h ^ 2 + 10h + 36) = 0 Així l'alçada h = 5 cm Ara longitud = (5-2) = 3 cm Ample = 5 + 7 = 12 cm Així que la super
La superfície de joc en el joc de curling és una fulla de gel rectangular amb una superfície d’uns 225 m ^ 2. L’amplada és d’uns 40 m menys que la longitud. Com trobeu les dimensions aproximades de la superfície de joc?
Expresseu l'amplada en termes de longitud, a continuació, substituïu i solucioneu per arribar a les dimensions de L = 45m i W = 5m. Comencem amb la fórmula d'un rectangle: A = LW: se'ns dóna la zona i sabem que l'amplada és de 40 metres menys de la longitud. Escrivim la relació entre L i W cap avall: W = L-40 I ara podem resoldre A = LW: 225 = L (L-40) 225 = L ^ 2-40L Vaig a restar L ^ 2-40L des d'ambdós costats, a continuació, multipliqueu per -1 de manera que L ^ 2 sigui positiu: L ^ 2-40L-225 = 0 Ara anem a factoritzar i resoldre L: (L-45) (L + 5) = 0 (L-45 ) =
El volum d’un cub augmenta a un ritme de 20 centímetres cúbics per segon. Què tan ràpid, en centímetres quadrats per segon, la superfície del cub augmenta en el moment en què cada vora del cub té 10 centímetres de llarg?
Tingueu en compte que la vora del cub varia amb el temps de manera que sigui una funció del temps l (t); tan: