Deixeu que l’altura de la caixa sigui
Llavors la seva longitud serà
Així doncs, per la condició del problema
Per
Per tant
Tan
Així, alçada
Llargada ara
Ample
Així, es converteix en superfície
La superfície de joc en el joc de curling és una fulla de gel rectangular amb una superfície d’uns 225 m ^ 2. L’amplada és d’uns 40 m menys que la longitud. Com trobeu les dimensions aproximades de la superfície de joc?
Expresseu l'amplada en termes de longitud, a continuació, substituïu i solucioneu per arribar a les dimensions de L = 45m i W = 5m. Comencem amb la fórmula d'un rectangle: A = LW: se'ns dóna la zona i sabem que l'amplada és de 40 metres menys de la longitud. Escrivim la relació entre L i W cap avall: W = L-40 I ara podem resoldre A = LW: 225 = L (L-40) 225 = L ^ 2-40L Vaig a restar L ^ 2-40L des d'ambdós costats, a continuació, multipliqueu per -1 de manera que L ^ 2 sigui positiu: L ^ 2-40L-225 = 0 Ara anem a factoritzar i resoldre L: (L-45) (L + 5) = 0 (L-45 ) =
El volum d’un cub augmenta a un ritme de 20 centímetres cúbics per segon. Què tan ràpid, en centímetres quadrats per segon, la superfície del cub augmenta en el moment en què cada vora del cub té 10 centímetres de llarg?
Tingueu en compte que la vora del cub varia amb el temps de manera que sigui una funció del temps l (t); tan:
Trobeu el volum de la figura següent? A) 576 cm cúbics. B) 900 cm cúbics. C) 1440 cm cúbics. D) 785 cm cúbics.
C Així, el volum total = volum de cilindre + volum de con = pi r ^ 2 h + 1/3 pi r ^ 2 (25-h), r = 5 cm, h = 15 cm, el volum és (pi (5) ^ 2 * 15 +1/3 pi (5) ^ 2 * 10) cm ^ 3 = 25pi (15 + 10/3) cm ^ 3 = 1439,9 cm ^ 3