Suposem que una paràbola té vèrtex (4,7) i passa també pel punt (-3,8). Quina és l’equació de la paràbola en forma de vèrtex?
En realitat, hi ha dues paràboles (de forma de vèrtex) que compleixen les vostres especificacions: y = 1/49 (x- 4) ^ 2 + 7 i x = -7 (y-7) ^ 2 + 4 Hi ha dues formes de vèrtex: y = a (x- h) ^ 2 + k i x = a (yk) ^ 2 + h on (h, k) és el vèrtex i el valor de "a" es pot trobar utilitzant un altre punt. No se'ns dóna cap raó per excloure una de les formes, per tant substituïm el vèrtex donat a ambdues: y = a (x- 4) ^ 2 + 7 i x = a (y-7) ^ 2 + 4 Resoldre per a tots dos valors d’un usant el punt (-3,8): 8 = a_1 (-3- 4) ^ 2 + 7 i -3 = a_2 (8-7) ^ 2 + 4 1 = a_1 (-7) ^ 2 i - 7
La forma del vèrtex de l’equació d’una paràbola és x = (y - 3) ^ 2 + 41, quina és la forma estàndard de l’equació?
Y = + - sqrt (x-41) +3 Hem de resoldre per y. Un cop fet això, podem manipular la resta del problema (si cal) per canviar-lo a la forma estàndard: x = (y-3) ^ 2 + 41 restar 41 a banda i banda x-41 = (i -3) ^ 2 prengui l’arrel quadrada dels dos costats color (vermell) (+ -) sqrt (x-41) = y-3 afegiu 3 a tots dos costats y = + - sqrt (x-41) +3 o y = 3 + -sqrt (x-41) La forma estàndard de les funcions de l'arrel quadrada és y = + - sqrt (x) + h, així que la nostra resposta final hauria de ser y = + - sqrt (x-41) +3
La forma del vèrtex de l’equació d’una paràbola és y + 10 = 3 (x-1) ^ 2 quina és la forma estàndard de l’equació?
Y = 3x ^ 2 -6x-7 Simplifica l'equació donada com y + 10 = 3 (x ^ 2 -2x +1) Per tant y = 3x ^ 2 -6x + 3-10 O, y = 3x ^ 2 -6x- 7, que és la forma estàndard requerida.