Primera prova de derivats per a extrems locals
Deixar
Si
Si
Si
James va fer dues proves de matemàtiques. Va obtenir 86 punts en la segona prova. Va ser 18 punts superior a la seva puntuació en la primera prova. Com escriviu i solucioneu una equació per trobar la puntuació que James va rebre en la primera prova?
La puntuació de la primera prova va ser de 68 punts. Sigui la primera prova x. La segona prova va ser de 18 punts més que la primera prova: x + 18 = 86 Restar 18 de tots dos costats: x = 86-18 = 68 La puntuació en la primera prova va ser de 68 punts.
La primera prova d’estudis socials va tenir 16 preguntes. La segona prova tenia un 220% de preguntes com la primera prova. Quantes preguntes hi ha a la segona prova?
Color (vermell) ("Aquesta pregunta és correcta?") El segon document té 35.2 preguntes ??????? color (verd) ("Si el primer document tenia 15 preguntes, el segon seria de 33") Quan mireu alguna cosa, normalment declarareu les unitats en què esteu mesurant. Això podria ser polzades, centímetres, quilograms, etc. Així, per exemple, si teníeu 30 centímetres, escriviu 30 cm. El percentatge no és diferent. En aquest cas, les unitats de mesura són% on% -> 1/100. Així, el 220% és el mateix que 220xx1 / 100. Així, el 220% de 16 és 220xx1 / 1
Utilitzem la prova de línia vertical per determinar si alguna cosa és una funció, per què utilitzem una prova de línia horitzontal per a una funció inversa oposada a la prova de línia vertical?
Només fem servir la prova de línia horitzontal per determinar, si la inversa d’una funció és realment una funció. Heus aquí per què: primer heu de preguntar-vos què és la inversa d’una funció, és allà on es canvien x i y, o una funció simètrica a la funció original a través de la línia, y = x. Així doncs, sí, utilitzem la prova de línia vertical per determinar si alguna cosa és una funció. Què és una línia vertical? Bé, la seva equació és x = algun nombre, totes les línies on x