El producte de dos enters parells consecutius és 624. Com es troben els enters?

El producte de dos enters parells consecutius és 624. Com es troben els enters?
Anonim

Resposta:

Vegeu un procés de solució a continuació:

Explicació:

Primer, anomenem el primer número: # x #

Aleshores el següent enter sencer consecutiu seria: #x + 2 #

Per tant, el seu producte en forma estàndard seria:

#x (x + 2) = 624 #

# x ^ 2 + 2x = 624 #

# x ^ 2 + 2x - color (vermell) (624) = 624 - color (vermell) (624) #

# x ^ 2 + 2x - 624 = 0 #

Podem considerar això:

(x + 26) (x - 24) = 0

Ara, podem resoldre cada terme al costat esquerre de l’equació #0#:

Solució 1:

#x + 26 = 0 #

#x + 26 - color (vermell) (26) = 0 - color (vermell) (26) #

#x + 0 = -26 #

#x = -26 #

Solució 2:

#x - 24 = 0 #

#x - 24 + color (vermell) (24) = 0 + color (vermell) (24) #

#x - 0 = 24 #

#x = 24 #

Si el primer nombre és #-26# llavors el segon nombre és:

#-26 + 2 = -24#

#-26 * -24 = 624#

Si el primer nombre és 24, el segon nombre és:

#24 + 2 = 26#

#24 * 26 = 624#

Hi ha dues solucions a aquest problema:

#{-26, -24}#; #{24, 26}#