La resposta que li donarà el professor depèn d'on sigueu en l’ensenyament de matemàtiques.
No hi ha cap nombre positiu o negatiu que sigui l’arrel quadrada de
Si marcem un nombre positiu obtenim una resposta positiva.
Si marcem un nombre negatiu, encara obtenim un nombre positiu.
No hi ha cap nombre positiu o negatiu (nombre real) el quadrat és negatiu.
Però, Ho sabem, per a números positius
Seguint el mateix raonament, esperaríem tenir:
Hi ha un problema amb
La solució és inventar un nou número que tingui el quadrat
Usant el nou número, podem escriure
Però, si volem mantenir la nostra aritmètica habitual, llavors
Però també ho tenim
Perquè és una molèstia escriure i dir
(En matemàtiques, ho diem
El símbol de l'arrel quadrada significa el que no té un signe menys al davant, per tant
Quina és la forma simplificada de l'arrel quadrada de l'arrel quadrada de 10 de 5 sobre l'arrel quadrada de 10 + arrel quadrada de 5?
(sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) = 3-2sqrt (2) (sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) ) color (blanc) ("XXX") = cancel (sqrt (5)) / cancel (sqrt (5)) * (sqrt (2) -1) / (sqrt (2) +1) color (blanc) (") XXX ") = (sqrt (2) -1) / (sqrt (2) +1) * (sqrt (2) -1) / (sqrt (2) -1) color (blanc) (" XXX ") = ( sqrt (2) -1) ^ 2 / ((sqrt (2) ^ 2-1 ^ 2) color (blanc) ("XXX") = (2-2sqrt2 + 1) / (2-1) color (blanc) ("XXX") = 3-2sqrt (2)
Quina és l'arrel quadrada de 3 + l'arrel quadrada de 72 - l'arrel quadrada de 128 + l'arrel quadrada de 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Sabem que 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, de manera que sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Sabem que 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, de manera que sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Sabem que 128 = 2 ^ 7 , per tant sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Simplificació de 7sqrt (3) - 2sqrt (2)
Quina és l'arrel quadrada de 7 + arrel quadrada de 7 ^ 2 + arrel quadrada de 7 ^ 3 + arrel quadrada de 7 ^ 4 + arrel quadrada de 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) El primer que podem fer és cancel·lar les arrels amb les potències parells. Des de: sqrt (x ^ 2) = x i sqrt (x ^ 4) = x ^ 2 per a qualsevol nombre, podem dir que sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Ara, 7 ^ 3 poden ser reescrits com 7 ^ 2 * 7, i que 7 ^ 2 pot sortir de l’arrel! El mateix s'aplica a 7 ^ 5 però es reescriu com 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) Ara