Resposta:
Explicació:
Tingues en compte que:
Així que la funció
està definit per a tots els usuaris
A més, com
Però es tracta d’un polinomi de segon ordre amb coeficient positiu capdavanter, per tant no té un mínim local ni un mínim.
Des de
i:
només quan
i
només per
Conseqüentment:
i:
només per
Podem concloure això
Necessitem
-
Per
#x <-1 # tenim#g '(x) <0 # tan# g # és estrictament decreixent# (- oo, -1 # -
Per
#x> # #-1# tenim#g '(x)> 0 # tan# g # és estrictament creixent a# - 1, + oo) #
Per tant
Com a resultat
El punt (-4, -3) es troba en un cercle el centre de la qual es troba a (0,6). Com es troba una equació d'aquest cercle?
X ^ 2 + (y-6) ^ 2 = 109 Si el cercle té un centre a (0,6) i (-4, -3) és un punt de la seva circumferència, llavors té un radi de: color (blanc ) ("XXX") r = sqrt ((0 - (- 3)) ^ 2+ (6 - (- 4)) ^ 2) = sqrt (109) la forma estàndard per a un cercle amb centre (a, b) i el radi r és el color (blanc) ("XXX") (xa) ^ 2 + (yb) ^ 2 = r ^ 2. En aquest cas tenim color (blanc) ("XXX") x ^ 2 + (i-6 ) ^ 2 = 109 graf {x ^ 2 + (i-6) ^ 2 = 109 [-14,24, 14,23, -7,12, 7,11]}
Jenna està volant una cometa en un dia molt vent. La cadena de cometa fa un angle de 60 amb el terra. L’estel es troba directament a sobre de la caixa de sorra, que es troba a 28 peus d’on es troba Jenna. Aproximadament quina part de la cadena de cometes s’utilitza actualment?
La longitud de la cadena de cometes en ús és de 56 peus. Deixeu que la longitud de la cadena sigui L Aquesta és la mnemotècnica que faig servir per a les relacions de trigues. Sona com a Sew Car Tower i està escrit com "Soh" -> sin = ("oposat") / ("hipotenusa") "Cah" -> cos = ("adjacent") / ("hipotenusa") "Toa" -> tan = ("oposat") / ("adjacent") ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ El nostre triangle té adjacent i hipotenusa, de manera que fem servir el cosinus cos (60 ^ 0) = ("
Què és (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))?
2/7 Prenem, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (cancel·lar (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - cancel·lar (2sqrt15) -5 + 2 * 3 + cancel·lar (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Tingueu en compte que si en els denomina