Com s'integren int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) utilitzant fraccions parcials?

Com s'integren int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) utilitzant fraccions parcials?
Anonim

Resposta:

#int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) dx = #

# 2ln (x-1) + 2ln (x + 1) -2 / (x + 1) + C_o #

Explicació:

Configureu l’equació per resoldre les variables A, B, C

#int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) dx = int (A / (x-1) + B / (x + 1) + C / (x +1) ^ 2) dx #

Resolim primer A, B, C

# (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) = A / (x-1) + B / (x + 1) + C / (x + 1) ^ 2 #

LCD # = (x-1) (x + 1) ^ 2 #

# (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) = (A (x + 1) ^ 2 + B (x ^ 2-1) + C (x-1))) / ((x-1) (x + 1) ^ 2) #

Simplifica

# (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) = (A (x ^ 2 + 2x + 1) + B (x ^ 2-1) + C (x -1)) / ((x-1) (x + 1) ^ 2)

# (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) = (Ax ^ 2 + 2Ax + A + Bx ^ 2-B + Cx-C) / ((x- 1) (x + 1) ^ 2) #

Reorganitzeu els termes del costat dret

# (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) = (Ax ^ 2 + Bx ^ 2 + 2Ax + Cx + ABC) / ((x-1) (x +1) ^ 2) #

establim les equacions per resoldre per A, B, C fent coincidir els coeficients numèrics de termes esquerra i dreta

# A + B = 4 "" #primera equació

# 2A + C = 6 "" # #segona equació

# A-B-C = -2 "" #tercera equació

Solució simultània amb resultats de segona i tercera equació a

# 2A + A + C-C-B = 6-2 #

# 3A-B = 4 "" #quarta equació

Utilitzant ara la primera i la quarta equació

# 3A-B = 4 "" #quarta equació

# 3 (4-B) -B = 4 "" #quarta equació

# 12-3B-B = 4 #

# -4B = 4-12 #

# -4B = -8 #

# B = 2 #

Solucioneu l’ús d’A # 3A-B = 4 "" #quarta equació

# 3A-2 = 4 "" #quarta equació

# 3A = 4 + 2 #

# 3A = 6 #

# A = 2 #

Solucioneu C utilitzant el # 2A + C = 6 "" # #segona equació i # A = 2 # i # B = 2 #

# 2A + C = 6 "" # #segona equació

# 2 (2) + C = 6 #

# 4 + C = 6 #

# C = 6-4 #

# C = 2 #

Ara realitzem la nostra integració

#int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) dx = int (2 / (x-1) + 2 / (x + 1) + 2 / (x +1) ^ 2) dx #

#int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) dx = int (2 / (x-1) + 2 / (x + 1) + 2 * (x +1) ^ (- 2)) dx #

#int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) dx = 2ln (x-1) + 2ln (x + 1) + (2 * (x + 1) ^ (- 2 + 1)) / (- 2 + 1) + C_o #

#int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) dx = 2ln (x-1) + 2ln (x + 1) -2 / (x + 1) + Co#

Déu beneeixi ….. espero que l’explicació sigui útil.