Resposta:
Explicació:
Hem de trobar
per a tot
Multiplica els dos costats de
Els coeficients d’equivalència ens donen
I així ho tenim
Ara, integrar-lo termini per terme
aconseguir
Resposta:
La resposta és
Explicació:
Realitzeu la descomposició en fraccions parcials
Els denominadors són els mateixos, compari els numeradors
Deixar
Deixar
Coeficients de
Per tant,
Tan,
Com s'integren int (x-9) / ((x + 3) (x-6) (x + 4)) utilitzant fraccions parcials?
Cal descompondre (x-9) / ((x + 3) (x-6) (x + 4)) com a fracció parcial. Busqueu a, b, c en RR de tal manera que (x-9) / ((x + 3) (x-6) (x + 4)) = a / (x + 3) + b / (x -6) + c / (x + 4). Us mostraré com trobar un únic, ja que b i c es troben de la mateixa manera. Es multipliquen els dos costats per x + 3, això farà que desaparegui del denominador del costat esquerre i faci que aparegui al costat de b i c. (x-9) / ((x + 3) (x-6) (x + 4)) = a / (x + 3) + b / (x-6) + c / (x + 4) si i / o (x -9) / ((x-6) (x + 4)) = a + (b (x + 3)) / (x-6) + (c (x + 3)) / (x + 4). Valoreu això a x-3 per tal de fer q
Com s'integren int (x + 1) / (x ^ 2 + 6x) utilitzant fraccions parcials?
= int (x + 1) / (x ^ 2 + 6x) d x int (x + 1) / (x ^ 2 + 6x) d x
Com s'integren int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) utilitzant fraccions parcials?
Int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) dx = 2ln (x-1) + 2ln (x + 1) -2 / (x + 1) + C_o Configureu l'equació per resoldre les variables A, B, C int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) dx = int (A / (x-1) + B / (x + 1) + C / (x + 1) ^ 2) dx Resolim primer A, B, C (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ) ^ 2) = A / (x-1) + B / (x + 1) + C / (x + 1) ^ 2 LCD = (x-1) (x + 1) ^ 2 (4x ^ 2 + 6x -2) / ((x-1) (x + 1) ^ 2) = (A (x + 1) ^ 2 + B (x ^ 2-1) + C (x-1)) / ((x- 1) (x + 1) ^ 2) Simplifica (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) = (A (x ^ 2 + 2x + 1) + B (B) x ^ 2-1) + C (x-1)) / ((x-1) (x + 1) ^ 2) (4x ^ 2 + 6x-2) / ((x